Skip to main content

Donnan-Potential Sensors Based on Zirconia-Modified Nafion Membranes Treated under Different Conditions for the Determination of Amino Acids with Several Nitrogen-Containing Groups

Abstract

The effect of heat treatment at varying relative humidity and mechanical deformation on the properties of Nafion perfluorosulfonic cation-exchange membranes and Nafion-based hybrid materials containing hydrated zirconia nanoparticles has been studied. It has been shown that the treatment of the materials makes it possible to change their water uptake, ionic conductivity, and diffusion permeability over wide ranges. Variations in the water uptake and intrapore space volume of the membranes provided by their treatment and modification have led to a decrease in the sensitivity of DP-sensors (the analytical signal is the Donnan potential) to interfering hydroxonium cations in arginine and histidine solutions in 1.5−5 times. The material samples providing a high accuracy of determination of amino acid ions in a concentration range from 1.0 × 10–4 to 1.0 × 10–1 mol/L at pH < 7 have been selected.

This is a preview of subscription content, access via your institution.

References

  1. E. Yu. Safronova and A. B. Yaroslavtsev, Pet. Chem. 56, 281 (2016).

    CAS  Article  Google Scholar 

  2. A. B. Yaroslavtsev, Y. A. Dobrovolsky, L. A. Frolova, et al., Russ. Chem. Rev. 81 191 (2012).

    CAS  Article  Google Scholar 

  3. Z. Yang, H. Nie, X. A. Chen, et al., J. Power Sources 236, 238 (2013).

    CAS  Article  Google Scholar 

  4. N. V. Long, Y. Yang, C. M. Thi, et al., Nano Energy 2, 636 (2013).

    Article  Google Scholar 

  5. E. van de Ven, A. Chairuna, G. Merle, et al., J. Power Sources 222, 202 (2013).

    Article  Google Scholar 

  6. S. Daer, J. Kharraz, A. Giwa, and S. W. Hasan, Desalination 367, 37 (2015).

    CAS  Article  Google Scholar 

  7. Z. Wang, H. Wang, J. Liu, and Y. Zhang, Desalination 344, 313 (2014).

    CAS  Article  Google Scholar 

  8. M. Kumar and M. Ulbricht, Sep. Purif. Technol. 127, 181 (2014).

    CAS  Article  Google Scholar 

  9. Yu. P. Yampolskii, L. E. Starannikova, and N. A. Belov, Pet. Chem. 54, 637 (2014).

    CAS  Article  Google Scholar 

  10. P. Xu, G. M. Zeng, D. L. Huang, et al., Sci. Tot. Environ. 424, 1 (2012).

    CAS  Article  Google Scholar 

  11. X. Qu, P. J. J. Alvarez, and Q. Li, Water Res. 47, 3931 (2013).

    CAS  Article  Google Scholar 

  12. S. Wang, Y. Kang, L. Wang, et al., Sens. Actuators, B 182, 467 (2013).

    CAS  Article  Google Scholar 

  13. A. V. Parshina, T. S. Denisova, and O. V. Bobreshova, Pet. Chem. 56, 987 (2016).

    CAS  Article  Google Scholar 

  14. E. Yu. Safronova, I. A. Stenina, and A. B. Yaroslavtsev, Pet. Chem. 57, 299 (2017).

    CAS  Article  Google Scholar 

  15. N. Berezina, S. Timofeev, and N. Kononenko, J. Membr. Sci. 209, 509 (2002).

    CAS  Article  Google Scholar 

  16. N. A. Kononenko, M. A. Fomenko, and Y. M. Volfkovich, Adv. Colloid Interface Sci. 222, 425 (2015).

    CAS  Article  Google Scholar 

  17. G. Alberti, R. Narducci, and M. Sganappa, J. Power Sources 178, 575 (2008).

    CAS  Article  Google Scholar 

  18. R. Kuwertz, C. Kirstein, T. Turek, and U. Kunz, J. Membr. Sci. 500, 225 (2016).

    CAS  Article  Google Scholar 

  19. D. DeBonis, M. Mayer, A. Omosebi, and R. S. Besser, Energy 89, 200 (2016).

    CAS  Google Scholar 

  20. J. Ran, L. Wu, Y. He, et al., J. Membr. Sci. 522, 267 (2017).

    CAS  Article  Google Scholar 

  21. N. P. Berezina, A. A. Kubaisy, S. V. Timofeev, and L. V. Karpenko, J. Solid State Electrochem. 11, 378 (2007).

    CAS  Article  Google Scholar 

  22. C. Lin, T. Haolin, and P. Mu, Int. J. Hydrogen Energy 37, 4694 (2012).

    Article  Google Scholar 

  23. V. D. Noto, N. Boaretto, E. Negro, et al., Int. J. Hydrogen Energy 37, 6215 (2012).

    Article  Google Scholar 

  24. H. Strathmann, A. Grabowski, and G. Eigenberger, J. Ind. Eng. Chem. Res. 52, 10364 (2013).

    CAS  Article  Google Scholar 

  25. D. J. Kim, M. J. Jo, and S. Y. Nam, J. Ind. Eng. Chem. Res. 21, 36 (2015).

    CAS  Article  Google Scholar 

  26. E. V. Nazyrova, S. A. Shkirskaya, N. A. Kononenko, and O. A. Demina, Pet. Chem. 6, 931 (2016).

    Article  Google Scholar 

  27. A. Abo-Hamad, M. A. AlSaadi, M. Hayyan, et al., Electrochim. Acta 193, 321 (2016).

    CAS  Article  Google Scholar 

  28. C. Gao, Z. Guo, J. H. Liu, and X. J. Huang, Nanoscale 4, 1948 (2012).

    CAS  Article  Google Scholar 

  29. Z. Wang, G. Liu, L. Zhang, and H. Wang, Ionics 19, 1687 (2013).

    CAS  Article  Google Scholar 

  30. P. K. Kalambate, B. J. Sanghavi, S. P. Karna, and A. K. Srivastava, Sens. Actuators, B 213, 285 (2015).

    CAS  Article  Google Scholar 

  31. V. Arun and K. R. Sankaran, J. Electroanal. Chem. 769, 35 (2016).

    CAS  Article  Google Scholar 

  32. Y. Freijanes, V. M. Barragán, and S. Muñoz, J. Membr. Sci. 510, 79 (2016).

    CAS  Article  Google Scholar 

  33. A. V. Parshina, E. Yu. Safronova, E. A. Ryzhkova, et al., Mendeleev Commun. 26, 505 (2016).

    CAS  Article  Google Scholar 

  34. E. Safronova, D. Safronov, A. Lysova, et al., Sens. Actuators, B 240, 1016 (2017).

    CAS  Article  Google Scholar 

  35. E. Safronova, D. Golubenko, G. Pourcelly, and A. Yaroslavtsev, J. Membr. Sci. 473, 218 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Safronova.

Additional information

Original Russian Text © E.Yu. Safronova, A.V. Parshina, E.A. Ryzhkova, D.V. Safronov, O.V. Bobreshova, A.B. Yaroslavtsev, 2017, published in Membrany i Membrannye Tekhnologii, 2017, Vol. 7, No. 6, pp. 432–440.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safronova, E.Y., Parshina, A.V., Ryzhkova, E.A. et al. Donnan-Potential Sensors Based on Zirconia-Modified Nafion Membranes Treated under Different Conditions for the Determination of Amino Acids with Several Nitrogen-Containing Groups. Pet. Chem. 57, 1250–1257 (2017). https://doi.org/10.1134/S0965544117130096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117130096

Keywords

  • potentiometric sensors
  • DP sensors
  • cross sensitivity
  • hybrid membranes
  • zirconia
  • mechanical deformation
  • hydrothermal treatment
  • heat treatment
  • transport properties
  • amino acids
  • polyionic solutions