Skip to main content

Methanol Steam Reforming over ZrO2-Supported Catalysts in Conventional and Membrane Reactors

Abstract

Results of a study of the methanol steam reforming (MSR) catalytic process in conventional flow and membrane reactors in the presence of Ni0.2–Cu0.8 and Ru0.5–Rh0.5 catalysts supported on ZrO2 with a monoclinic, tetragonal, and cubic structure have been described. The cubic structure of zirconia has been stabilized with ceria. The samples have been characterized by X-ray diffraction analysis, transmission electron microscopy, and the BET method. It has been shown that the catalytic activity of the composites depends on the type of the metals and the structure of the support. It has been found that the Ru–Rh/Ce0.1Zr0.9O2–δ catalyst exhibits the highest activity, whereas Cu–Ni/Ce0.1Zr0.9O2–δ is the most selective. A comparative study of the MSR process in conventional and membrane reactors with Pd–Ru and modified Pd–Ag membranes has been conducted. The membrane process with a membrane based on a Pd–Ag alloy in the presence of the Ru–Rh/Ce0.1Zr0.9O2–δ catalyst provides a ~50% increase in the hydrogen yield.

This is a preview of subscription content, access via your institution.

References

  1. S. Sa, H. Silva, L. Brandao, et al., Appl. Catal., B 99, 43 (2010).

    CAS  Article  Google Scholar 

  2. G. A. Olah, A. Goeppert, and G. K. S. Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley–VCH, Weinheim, 2009).

    Book  Google Scholar 

  3. C. Mateos-Pedrero, H. Silva, D. A. P. Tanaka, et al., Appl. Catal., B 174/175, 67 (2015).

    Article  Google Scholar 

  4. C. S. R. Azenh, C. Mateos-Pedrero, S. Queiros, et al., Appl. Catal., B 203, 400 (2017).

    Article  Google Scholar 

  5. Y. H. Huang, S. F. Wang, A. P. Tsai, and S. Kameoka, J. Power Sources 281, 138 (2015).

    CAS  Article  Google Scholar 

  6. D. R. Palo, A. D. Dagle, and J. D. Holladay, Chem. Rev. 107, 3992 (2007).

    CAS  Article  Google Scholar 

  7. M. Krumpelt, T. Krause, J. Carter, et al., Catal. Today 77, 3 (2002).

    CAS  Article  Google Scholar 

  8. A. Iulianelli, T. Longo, S. Liguori, et al., Int. J. Hydrogen Energy 34, 8558 (2009).

    CAS  Article  Google Scholar 

  9. M. A. Soria, C. Mateos-Pedrero, A. Guerrero-Ruiz, and I. Rodríguez-Ramos, Int. J. Hydrogen Energy 36, 15212 (2011).

    CAS  Article  Google Scholar 

  10. C. C. Hung, S. L. Chen, Y. K. Liao, et al., Int. J. Hydrogen Energy 37, 4955 (2012).

    CAS  Article  Google Scholar 

  11. I. A. Carbajal Ramos, T. Montini, B. Lorenzut, et al. Catal. Today 180, 96(2012).

    Article  Google Scholar 

  12. U. Amjad, A. Vita, C. Galletti, et al., Ind. Eng. Chem. Res. 52, 15428 (2013).

    CAS  Article  Google Scholar 

  13. N. Srisiriwat, S. Therdthianwong, and A. Therdthianwong, Int. J. Hydrogen Energy 34, 2224 (2009).

    CAS  Article  Google Scholar 

  14. M. Mrad, D. Hammoud, C. Gennequin, et al., Appl. Catal., A: 471, 84 (2014).

    CAS  Article  Google Scholar 

  15. P. Mierczynski, K. Vasilev, A. Mierczynska, et al., Appl. Catal., B 185, 281 (2016).

    CAS  Article  Google Scholar 

  16. W. Zhou, Y. Ke, Q. Wang, et al., Fuel 191, 46 (2017).

    CAS  Article  Google Scholar 

  17. S. Jampa, A. M. Jamieson, Th. Chaisuwan, et al., Int. J. Hydrogen Energy 42, 15073 (2017).

    CAS  Article  Google Scholar 

  18. J. He, Z. Yang, L. Zhang, et al., Int. J. Hydrogen Energy 42, 9930 (2017).

    CAS  Article  Google Scholar 

  19. C. Pojanavaraphan, U. Satitthai, A. Luengnaruemitchai, and E. Gulari, J. Ind. Eng. Chem. 22, 41 (2015).

    CAS  Article  Google Scholar 

  20. A. A. Lytkina, N. A. Zhilyaeva, M. M. Ermilova, et al., Int. J. Hydrogen Energy 40, 9677(2015).

    CAS  Article  Google Scholar 

  21. D. W. Jeong, W. J. Jang, H. S. Na, et al., J. Ind. Eng. Chem. 27, 35 (2015).

    CAS  Article  Google Scholar 

  22. Q. Zhang, L. Xu, P. Ning, et al., Appl. Surf. Sci. 317, 955 (2014).

    CAS  Article  Google Scholar 

  23. G. J. Grashoff, C. E. Pilkington, and C. W. Corti, Met. Rev. 27, 157 (1983).

    CAS  Google Scholar 

  24. J. Docekal, Int. J. Hydrogen Energy 11, 709 (1986).

    CAS  Article  Google Scholar 

  25. S. N. Paglieri and J. D. Way, Sep. Purif. Rev. 31, 1 (2002).

    CAS  Article  Google Scholar 

  26. A. Iulianelli, P. Ribeirinha, A. Mendes, and A. Basile, Renew. Sustain. Energy Rev. 24, 355 (2014).

    Article  Google Scholar 

  27. A. Iulianelli and A. Basile, Catal. Sci. Technol. 1, 366 (2011).

    CAS  Article  Google Scholar 

  28. E. Yu. Mironova, A. A. Lytkina, M. M. Ermilova, et al., Int. J. Hydrogen Energy 40, 3557 (2015).

    CAS  Article  Google Scholar 

  29. I. A. Stenina, E. Yu. Voropaeva, A. G. Veresov, et al., Russ. J. Inorg. Chem. 53, 350 (2008).

    Article  Google Scholar 

  30. I. S. Petriev, S. N. Bolotin, V. Yu. Frolov, et al., Bull. Russ. Acad. Sci.: Phys. 80, 624 (2016).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lytkina.

Additional information

Original Russian Text © A.A. Lytkina, N.V. Orekhova, M.M. Ermilova, I.S. Petriev, M.G. Baryshev, A.B. Yaroslavtsev, 2017, published in Membrany i Membrannye Tekhnologii, 2017, Vol. 7, No. 6, pp. 398–407.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lytkina, A.A., Orekhova, N.V., Ermilova, M.M. et al. Methanol Steam Reforming over ZrO2-Supported Catalysts in Conventional and Membrane Reactors. Pet. Chem. 57, 1219–1227 (2017). https://doi.org/10.1134/S0965544117130072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117130072

Keywords

  • membrane catalysis
  • methanol steam reforming
  • zirconia
  • hydrogen production
  • Ni–Cu catalysts
  • Ru–Rh catalysts