Skip to main content

Effect of Protolysis Reactions on the Shape of Chronopotentiograms of a Homogeneous Anion-Exchange Membrane in NaH2PO4 Solution

Abstract

Single-pulse and double-pulse chronopotentiograms of a homogeneous anion-exchange membrane AX in 0.02 M solutions of NaCl (system 1) or NaH2PO4 (system 2) have been recorded in underlimiting and overlimiting current modes. It has been found that in the case of exceeding the limiting current (i > i Levlim ) calculated using the convection–diffusion model, the time required to establish a steady state in system 2 increases by more than an order of magnitude compared to system 1. The slow growth of the potential drop is due to a gradual transition of the membrane from the form in which the main counterion is H2PO 4 to the HPO 2–4 form. This transition is due to the deprotonation of a part of H2PO 4 ions forming HPO 2–4 and protons as they enter the membrane. The participation of H+ in charge transfer in the depleted diffusion layer at a given current density causes a lower value of the potential drop than in system 1 for the same i/i Levlim ratio. In intense current regimes, chronopotentiograms of system 2 exhibit two inflection points. The first point corresponds to the classical Sand transition time and is due to reaching the limiting current of H2PO 4 ions (the main charge carrier for i < i Levlim ) in the depleted diffusion layer. The second point is associated with a critical current that can be called the second limiting current in the system with NaH2PO4 and has no analogue in the system with NaCl. This current, which is approximately 2i Levlim , corresponds to the state when the membrane is completely transformed into the HPO 2–4 form. Meanwhile, the source of protons due to the transformation of H2PO 4 into HPO 2–4 ions as they enter the membrane is exhausted. After reaching this critical value of the potential drop, either the HPO 2–4 deprotonation reaction to give triply charged PO 3–4 ions in the membrane or the water splitting on fixed groups located at the membrane/solution interface may occur.

This is a preview of subscription content, access via your institution.

References

  1. R. He, A. T. Girgih, E. Rozoy, et al., Food Chem. 197, 1008 (2016).

    CAS  Article  Google Scholar 

  2. G. Chen, W. Song, B. Qi, et al., Sep. Purif. Technol. 147, 32 (2015).

    CAS  Article  Google Scholar 

  3. J. Xu, X.-F. Su, J.-W. Bao, et al., Bioresour. Technol. 189, 186 (2015).

    CAS  Article  Google Scholar 

  4. V. A. Shaposhnik and T. V. Eliseeva, J. Membr. Sci. 161, 223 (1999).

    CAS  Article  Google Scholar 

  5. T. V. Eliseeva, E. V. Krisilova, V. P. Vasilevsky, and E. G. Novitsky, Pet. Chem. 52, 609 (2012).

    CAS  Article  Google Scholar 

  6. M. Metayer, M. Legras, O. Grigorchouk, et al., Desalination 147, 375 (2002).

    CAS  Article  Google Scholar 

  7. T.V. Eliseeva and V. A. Shaposhnik, Russ. J. Electrochem. 36, 64 (2000).

    CAS  Article  Google Scholar 

  8. V. I. Vasil’eva and E. A. Vorob’eva, Russ. J. Phys. Chem. A 86, 1852 (2012).

    Google Scholar 

  9. E. A. Vorobjeva and V. I. Vasil’eva, Sorb. Khromatogr. Protsessy 10, 741 (2010).

    Google Scholar 

  10. V. Sarapulova, E. Nevakshenova, N. Pismenskaya, et al., J. Membr. Sci. 479, 28 (2015).

    CAS  Article  Google Scholar 

  11. P. Ramirez, A. Alcaraz, and S. Mafe, J. Colloid Interface Sci. 242, 164 (2001).

    CAS  Article  Google Scholar 

  12. L. Franck-Lacaze, P. Sistat, and P. Huguet, J. Membr. Sci. 326, 650 (2009).

    CAS  Article  Google Scholar 

  13. F. Helfferich, Ionenaustauscher, Bd. 1: Grundlagen Struktur-Herstellung-Theorie (Chemie, Weinheim, 1959).

    Google Scholar 

  14. R. Lteif, L. Dammak, C. Larchet, and B. Auclair, Eur. Polym. J. 35, 1187 (1999).

    CAS  Article  Google Scholar 

  15. E. D. Belashova, N. A. Melnik, N. D. Pismenskaya, et al., Electrochim. Acta 59, 412 (2012).

    CAS  Article  Google Scholar 

  16. V. V. Gil, M. A. Andreeva, N. D. Pismenskaya, et al., Pet. Chem. 56, 440 (2016).

    CAS  Article  Google Scholar 

  17. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    CAS  Article  Google Scholar 

  18. J. S. Newman, Electrochemical Systems (Prentice Hall, New York, 1973).

    Google Scholar 

  19. N. P. Gnusin, V. I. Zabolotsky, V. V. Nikonenko, and M. K. Urtenov, Russ. J. Electrochem. 22, 298 (1986).

    CAS  Google Scholar 

  20. J. J. Krol, M. Wessling, and H. Strathmann, J. Membr. Sci. 162, 155 (1999).

    CAS  Article  Google Scholar 

  21. E. D. Belashova, N. D. Pismenskaya, V. V. Nikonenko, et al., J. Membr. Sci. 542, 177 (2017). doi.org/10.1016/j.memsci.2017.08.002

    CAS  Article  Google Scholar 

  22. H. Roques, Fondements théoriques du traitment chimique des eaux, in two vols. (Lavoisier, Paris, 1990).

    Google Scholar 

  23. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, 1995).

    Google Scholar 

  24. N. Pismenskaya, E. Laktionov, V. Nikonenko, et al., J. Membr. Sci. 181, 185 (2001).

    CAS  Article  Google Scholar 

  25. N. Pismenskaia, P. Sistat, P. Huguet, et al., J. Membr. Sci. 228, 65 (2004).

    CAS  Article  Google Scholar 

  26. S. A. Mareev, D. Yu. Butylskii, N. D. Pismenskaya, and V. V. Nikonenko, J. Membr. Sci. 500, 171 (2016).

    CAS  Article  Google Scholar 

  27. V. I. Zabolotsky, N. V. Sheldeshov, and N. P. Gnusin, Russ Chem. Rev. 57, 501 (1988).

    Google Scholar 

  28. E. I. Belova, G. Yu. Lopatkova, N. D. Pismenskaya, et al., J. Phys. Chem. B 110, 13458 (2006).

    CAS  Article  Google Scholar 

  29. N. D. Pismenskaya, V. V. Nikonenko, E. I. Belova, et al., Russ. J. Electrochem. 43, 307 (2007).

    CAS  Article  Google Scholar 

  30. L. A. Zagorodnykh, O. V. Bobreshova, P. I. Kulintsov, and I. V. Aristov, Russ. J. Electrochem. 42, 59 (2006).

    CAS  Article  Google Scholar 

  31. I. Rubinstein and B. Zaltzman, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 2238 (2000).

    CAS  Article  Google Scholar 

  32. I. Rubinstein, B. Zaltzman, A. Futerman, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 79, 021506 (2009).

    CAS  Article  Google Scholar 

  33. E. A. Shutkina, E. E. Nevakshenova, N. D. Pismenskaya, et al., Kondens. Sredy Mezhfaz. Granitsy 17, 566 (2015).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Belashova.

Additional information

Original Russian Text © E.D. Belashova, O.A. Kharchenko, V.V. Sarapulova, V.V. Nikonenko, N.D. Pismenskaya, 2017, published in Membrany i Membrannye Tekhnologii, 2017, Vol. 7, No. 6, pp. 384–397.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belashova, E.D., Kharchenko, O.A., Sarapulova, V.V. et al. Effect of Protolysis Reactions on the Shape of Chronopotentiograms of a Homogeneous Anion-Exchange Membrane in NaH2PO4 Solution. Pet. Chem. 57, 1207–1218 (2017). https://doi.org/10.1134/S0965544117130035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117130035

Keywords

  • anion-exchange membrane
  • ampholyte
  • two-pulse chronopotentiometry
  • intradiffusion kinetics
  • concentration profiles
  • protonation–deprotonation reactions