Advertisement

Petroleum Chemistry

, Volume 57, Issue 12, pp 1002–1006 | Cite as

Dynamics of Formation of Asphalt Microstructure According to Modulated Differential Scanning Calorimetry Data

  • I. N. Frolov
  • T. N. Yusupova
  • M. A. Ziganshin
  • E. S. Okhotnikova
  • A. A. Firsin
Article

Abstract

The structural thermal properties of petroleum asphalts (using the BNK 40/180 brand as an example) have been analyzed by modulated differential scanning calorimetry (DSC). The method is based on separation of the overlapping reversing and nonreversing structural thermal processes upon temperature modulation of a heat flow, which makes it possible to observe, analyze, and quantitatively assess the thermal effects that are displayed on the temperature curves of conventional DSC. The method ensures the separation of crystallization (melting) processes and glass transitions. The temporal dynamics of the formation of asphalt microstructure is determined by rapid (shorter than 1 h), medium (up to 16 h), and slow (longer than 16 h) thermal processes of crystallization of paraffin hydrocarbons (HCs) of various structures and separation of asphaltenes into an individual nanosized phase.

Keywords

asphalt modulated DSC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Polacco, S. Filippi, F. Merusi, and G. Stastna, Adv. Colloid Interface Sci. 224, 2 (2015).CrossRefGoogle Scholar
  2. 2.
    J. Zhu, B. Birgisson, and N. Kringos, Eur. Polym. J. 54, 18 (2014).CrossRefGoogle Scholar
  3. 3.
    I. N. Frolov, T. N. Yusupova, M. A. Ziganshin, et al., Colloid J. 78, 712 (2016).CrossRefGoogle Scholar
  4. 4.
    H. R. Fischer and A. Cernescu, Fuel 153, 628 (2015).CrossRefGoogle Scholar
  5. 5.
    J. G. Speight, The Chemistry and Technology of Petroleum, 5th Ed. (CRC, Boca Raton, 2014).Google Scholar
  6. 6.
    M. Le Guern, E. Chaillenx, F. Farcas, et al., Fuel 89, 3330 (2010).CrossRefGoogle Scholar
  7. 7.
    D. Lesueur, Adv. Colloid Interface Sci. 145, 42 (2009).CrossRefGoogle Scholar
  8. 8.
    J. P. Planche, P. M. Claudy, J. M. Letoffe, and D. Martin, Thermochim. Acta 324, 223 (1998).CrossRefGoogle Scholar
  9. 9.
    B. Wunderlich, Thermal Analysis of Polymeric Materials (Springer, Berlin, 2005).Google Scholar
  10. 10.
    J. F. Masson and G. M. Polomark, Thermochim. Acta 374, 105 (2001).CrossRefGoogle Scholar
  11. 11.
    J. F. Masson, G. M. Polomark, S. Bundalo-Pere, and P. Collins, Thermochim. Acta 440, 132 (2006).CrossRefGoogle Scholar
  12. 12.
    I. N. Frolov, T. N. Yusupova, M. A. Ziganshin, et al., Neftepererab. Neftekhim., No. 5, 10 (2016).Google Scholar
  13. 13.
    J. F. Masson, G. M. Polomark, and P. Collins, Energy Fuel 16, 470 (2002).CrossRefGoogle Scholar
  14. 14.
    A.-J. Briard, M. Bouroukba, D. Petitjean, et al., Fuel 85, 764 (2006).CrossRefGoogle Scholar
  15. 15.
    X. Lu, M. Langton, P. Olofsson, and P. Redelius, J. Mater. Sci. 40, 1893 (2005).CrossRefGoogle Scholar
  16. 16.
    X. Lu and P. Redelius, Energy Fuel 20, 653 (2006).CrossRefGoogle Scholar
  17. 17.
    E. P. Gilbert, Phys. Chem. Chem. Phys. 1, 1517 (1999).CrossRefGoogle Scholar
  18. 18.
    X. Guo, B. A. Pethica, J. S. Huang, and R. K. Prud’-homme, Macromolecules 37, 5638 (2004).CrossRefGoogle Scholar
  19. 19.
    A. Hammami, J. Ratulowski, and J. A. P. Coutinho, Pet. Sci. Technol. 21, 345 (2003).CrossRefGoogle Scholar
  20. 20.
    F. F. A. Hollander, O. Stasse, J. Suchtelen, and W. J. P. Enckevort, J. Cryst. Growth 233, 868 (2001).CrossRefGoogle Scholar
  21. 21.
    C. Luo and J.-U. Sammer, Phys. Rev. Lett. 102, 147801 (2009).CrossRefGoogle Scholar
  22. 22.
    B. Wunderlich, Prog. Polym. Sci. 28, 383 (2003).CrossRefGoogle Scholar
  23. 23.
    L. C. Michon, D. A. Netzel, T. F. Turner, Energy Fuels 13, 602 (1999).CrossRefGoogle Scholar
  24. 24.
    D. Y. Hourston, M. Song, F. U. Scafer, et al., Thermochim. Acta 324, 109 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. N. Frolov
    • 1
  • T. N. Yusupova
    • 2
  • M. A. Ziganshin
    • 3
  • E. S. Okhotnikova
    • 2
  • A. A. Firsin
    • 1
  1. 1.Kazan National Research Technological UniversityKazan, TatarstanRussia
  2. 2.Arbuzov Institute of Organic and Physical ChemistryRussian Academy of SciencesKazan, TatarstanRussia
  3. 3.Kazan Federal UniversityKazan, TatarstanRussia

Personalised recommendations