Petroleum Chemistry

, Volume 57, Issue 12, pp 983–1001 | Cite as

Hydrogenation Process for Producing Light Petroleum Resins as Adhesive and Hot-Melt Components (Review)

  • S. V. Antonov
  • N. N. Petrukhina
  • O. A. Pakhmanova
  • A. L. Maksimov
Article

Abstract

The hydrogenation of petroleum resins (PRs) and the possibilities of using light hydrogenated PRs as components of hot-melt adhesives and pressure-sensitive adhesives have been surveyed. The theoretical aspects of hydrogenation of high molecular weight compounds and the influence of the main factors, such as average molecular mass, structure of hydrogenated moieties, catalyst support morphology, and solvent nature, on the extents of the hydrogenation and chain degradation reactions and their competition have been analyzed. Catalysts and processes for PR hydrogenation have been considered, and the appropriateness of using unsupported nanosized catalysts that mediate the process without diffusion limitations has been substantiated. The possibilities of using hydrogenated PRs in adhesive compositions with regard for compatibility with polymers and rheological and adhesion properties are described. Promising fields of research in hydrogenation of polymeric materials have been identified, including hydrogen-donor hydrogenation, in situ synthesis of sulfides in polymer solutions, particle size optimization of the active phase for hydrogenation of polymers with different average molecular masses, and highly selective hydrogenation of polymers.

Keywords

hydrogenation of polymers hydrogenated petroleum resin light petroleum resin pressure sensitive adhesives hot-melt adhesives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. V. Dumskii, B. I. No, and G. M. Butov, Chemistry and Technology of Petroleum Resins (Khimiya, Moscow, 1999) [in Russian].Google Scholar
  2. 2.
    Yu. V. Dumskii, Petroleum Resins (Khimiya, Moscow, 1988) [in Russian].Google Scholar
  3. 3.
    R. Mildenberg, M. Zander, and G. Collin, Hydrocarbon Resins (VCH, Weinheim, 1997).CrossRefGoogle Scholar
  4. 4.
    M. J. Zohuriaan-Mehr and H. Omidian, J. Macromol. Sci., Part C: Polym. Rev. 40, 23 (2000).CrossRefGoogle Scholar
  5. 5.
    J.-H. Park, W.-S. Kong, S.-H. Lee, et al. Int. J. Adhesion Adhesives 68, 326 (2016).CrossRefGoogle Scholar
  6. 6.
    S. G. Hentges, US Patent No. 4 916 192 (1990).Google Scholar
  7. 7.
    Q. Luvinh, A. V. Macedo, and R. J. F. Rydzkowski, US Patent No. 5 571 867 (1996).Google Scholar
  8. 8.
    J. P. Szymanski, E. R. Simmons, and J. S. Lindquist, US Patent No. 5 204 390 (1993).Google Scholar
  9. 9.
    Yu. V. Dumskii, G. F. Cherednikova, S. Yu. Dumskii, et al., Izv. VolgGTU 6 (1), 48 (2013).Google Scholar
  10. 10.
    Yu. V. Dumskii, G. F. Cherednikova, and S. Yu. Dumskii, Izv. VolgGTU 7 (1), 80 (2014).Google Scholar
  11. 11.
    Yu. V. Dumskii, G. F. Cherednikova, S. Yu. Dumskii, et al., Izv. VolgGTU 2 (7), 127 (2010).Google Scholar
  12. 12.
    Yu. V. Dumskii, G. M. Butov, G. F. Cherednikova, and S. Yu. Dumskii, Pet. Chem. 54, 69 (2014).CrossRefGoogle Scholar
  13. 13.
    D. Salari and A. Jodaei, Iran. Polym. J. 15, 55 (2006).Google Scholar
  14. 14.
    L. I. Bondaletova, V. G. Bondaletov, O. V. Verevkina, and A. A. Manankova, Izv. Tomsk. Politekh. Univ. 311, 111 (2007).Google Scholar
  15. 15.
    J. K. Shorrock, J. H. Clark, K. Wilson, and J. Chisem, Org. Process Res. Dev. 5, 249 (2001).CrossRefGoogle Scholar
  16. 16.
    M. Wismer and P. Prucnal, Ind. Eng. Chem. Res. 10, 279 (1971).CrossRefGoogle Scholar
  17. 17.
    A. Hatano, Y. Iwase, and K. Ashida, J. Macromol. Sci., Part A: Chem. 12, 647 (1978).CrossRefGoogle Scholar
  18. 18.
    N. T. McManus and G. L. Rempel, J. Macromol. Sci., Part C 35 239 (1995).Google Scholar
  19. 19.
    R. V. Jones, C. W. Moberly, and W. B. Reynolds, Ind. Eng. Chem. 45, 1117 (1953).CrossRefGoogle Scholar
  20. 20.
    L. Popa, M. Giurginca, and T. Zaharescu, Mater. Chem. Phys. 86, 11 (2004).CrossRefGoogle Scholar
  21. 21.
    N. A. Mohammadi and G. L. Rempel, ACS Symposium Series, vol. 364: Chemical Reactions on Polymers, Ed. by J. L. Benham and J. F. Kinstle, (American Chemical Society, Washington, DC, 1988), p. 393.CrossRefGoogle Scholar
  22. 22.
    Y. Tanaka, H. Sato, and Y. Ozeki, Polymer 16, 709 (1975).CrossRefGoogle Scholar
  23. 23.
    K. Yoon, S. B. Park, I. Park, and D. Y. Yoon, Bull. Korean Chem. Soc. 32, 3074 (2011).CrossRefGoogle Scholar
  24. 24.
    D. Xu, R. G. Carbonell, D. J. Kiserow, and G. W. Roberts, Ind. Eng. Chem. Res. 42, 3509 (2003).CrossRefGoogle Scholar
  25. 25.
    J. S. Ness, J. C. Brodil, F. S. Bates, et al., Macromolecules 35, 602 (2002).CrossRefGoogle Scholar
  26. 26.
    X. Guo and G. L. Rempel, J. Mol. Catal. 63, 279 (1990).CrossRefGoogle Scholar
  27. 27.
    Y. Liu, Z. Wei, Q. Pan, and G. L. Rempel, Appl. Catal., A 457, 62 (2013).CrossRefGoogle Scholar
  28. 28.
    D. Jamanek, Z. Wieczorek, I. Leszczynska, and W. Skupinski, Polimery 56, 189 (2011).Google Scholar
  29. 29.
    E. M. Khar’kova, L. E. Rozantseva, and V. M. Frolov, Polym. Sci., Ser. B. 53, 420 (2011).CrossRefGoogle Scholar
  30. 30.
    D. C. Mudalige and G. L. Rempel, J. Mol. Catal. A: Chem. 123, 15 (1997).CrossRefGoogle Scholar
  31. 31.
    P. Piya-areetham, P. Prasassarakich, and G. L. Rempel, J. Mol. Catal. A: Chem. 372, 151 (2013).CrossRefGoogle Scholar
  32. 32.
    R. Chien-chao Tsiang, W. Yang, and M. Tsai, Polymer 40, 6351 (1999).CrossRefGoogle Scholar
  33. 33.
    P. Martin, N. T. McManus, and G. L. Rempel, J. Mol. Catal. A: Chem. 126, 115 (1997).CrossRefGoogle Scholar
  34. 34.
    P. V. C. Rao, V. K. Upadhyay, and S. M. Pillai, Eur. Polym. J. 37, 1159 (2001).CrossRefGoogle Scholar
  35. 35.
    M. D. Gehlsen and F. S. Bates, Macromolecules 26, 4122 (1993).CrossRefGoogle Scholar
  36. 36.
    J. H. Rosedale and F. S. Bates, J. Am. Chem. Soc. 110, 3542 (1988).CrossRefGoogle Scholar
  37. 37.
    E. G. Fuentes-Ordónez, J. A. Salbidegoitia, J. L. Ayastuy, et al., Catal. Today 227, 163 (2014).CrossRefGoogle Scholar
  38. 38.
    E. G. Fuentes-Ordonez, J. A. Salbidegoitia, M. P. Gonzalez-Marcos, and J. R. Gonzalez-Velasco, Ind. Eng. Chem. Res. 52, 14798 (2013).CrossRefGoogle Scholar
  39. 39.
    J. Shabtai, X. Xiao, and W. Zmierczak, Energy Fuels 11, 76 (1997).CrossRefGoogle Scholar
  40. 40.
    W. Zmierczak, X. Xiao, and J. Shabtai, Fuel Process. Technol. 49, 31 (1996).CrossRefGoogle Scholar
  41. 41.
    W. Ding, J. Liang, and L. L. Anderson, Energy Fuels 11, 1219 (1997).CrossRefGoogle Scholar
  42. 42.
    M. D. Gehlsen, P. A. Weimann, F. S. Bates, et al., J. Polym. Sci., Part B: Polym. Phys. 33, 1527 (1995).CrossRefGoogle Scholar
  43. 43.
    D. A. Hucul, US Patent No. 6 399 538 (2002).Google Scholar
  44. 44.
    J. Chang and S. Huang, Ind. Eng. Chem. Res. 37, 1220 (1998).CrossRefGoogle Scholar
  45. 45.
    H. C. Hou, US Patent No. 2011 0 098 412 (2011).Google Scholar
  46. 46.
    G. A. Cassano, E. M. Valles, and L. M. Quinzani, Polymer 39, 5573 (1998).CrossRefGoogle Scholar
  47. 47.
    S. N. Massie, US Patent No. 5 378 767 (1995).Google Scholar
  48. 48.
    H. Nakatani, K. Nitta, T. Uozumi, and K. Soga, Polymer 40, 1623 (1999).CrossRefGoogle Scholar
  49. 49.
    L. B. Dong, S. Turgman-Cohen, G. W. Roberts, and D. J. Kiserow, Ind. Eng. Chem. Res. 49, 11280 (2010).CrossRefGoogle Scholar
  50. 50.
    K. Han, H. Zuo, Z. Zhu, et al., Ind. Eng. Chem. Res. 52, 17750 (2013).CrossRefGoogle Scholar
  51. 51.
    Q. Pan, G. Rempel, and J. Wu, US Patent No. 7 897 695 (2011).Google Scholar
  52. 52.
    Y. Lujun, J. Dahao, X. Jiao, et al., China Pet. Process. Petrochem. Technol. 14 (3), 83 (2012).Google Scholar
  53. 53.
    A. V. Macedo and J. L. Haluska, US Patent No. 6 433 104 (2002).Google Scholar
  54. 54.
    W. O. Webber, US Patent No. 3 432 481 (1969).Google Scholar
  55. 55.
    A. N. Stuckey and J. R. Shutt, Patent No. 4 328 090 (1982).Google Scholar
  56. 56.
    T. Okazaki, E. Nagahara, and H. Keshi, US Patent No. 6458902 (2002).Google Scholar
  57. 57.
    F. Yamakawa and T. Kitamura, EP Patent No. 1552 881 (2009).Google Scholar
  58. 58.
    H. J. Hagemeyer, H. E. Hogan, and S. H. Johnson, US Patent No. 3 701 760 (1972).Google Scholar
  59. 59.
    N. Sae-Ma, P. Praserthdam, J. Panpranot, et al., J. Appl. Polym. Sci. 117, 2862 (2010).Google Scholar
  60. 60.
    C. B. Johnson, S. G. Hentges, S. Maroie, and R. J. Litz, US Patent No. 5 171 793 (1992).Google Scholar
  61. 61.
    E. Berrevoets and J. van Drongelen, US Patent No. 5 817 900 (1998).Google Scholar
  62. 62.
    J. M. Tenenbaum and M. F. Deering, US Patent No. 4817175 (1989).Google Scholar
  63. 63.
    N. E. Daughenbaugh and D. G. Goodfellow, US Patent No. 5 491 214 (1996).Google Scholar
  64. 64.
    J. Coca, R. Rosal, F. V. Diez, and H. Sastre, J. Chem. Technol. Biotechnol. 53, 365 (1992).CrossRefGoogle Scholar
  65. 65.
    J. K. Kim, D. Y. Ryu, and K. H. Lee, Polymer 41, 5195 (2000).CrossRefGoogle Scholar
  66. 66.
    S. Matsubara and S. Iwai, US Patent No. 4 384 080 (1983).Google Scholar
  67. 67.
    T. Shiro, T. Kanno, K. Aratani, et al., Energy Fuels 16, 1314 (2002).CrossRefGoogle Scholar
  68. 68.
    J. A. Chandrasiri and C. A. Wilkie, ACS Symposium Series, vol. 599: Fire and Polymers II: Materials and Tests for Hazard Prevention, Ed. by G. L. Nelson (American Chemical Society, Washington, DC, 1995), p. 126.CrossRefGoogle Scholar
  69. 69.
    M. M. Ibrahim and M. S. Seehra, Energy Fuels 11, 926 (1997).CrossRefGoogle Scholar
  70. 70.
    J. L. Haluska and K. L. Riley, US Patent No. 6755963 (2004).Google Scholar
  71. 71.
    J. L. Haluska and K. L. Riley, WO Patent No. 2000042082 (2000).Google Scholar
  72. 72.
    M. K. Herbert and D. L. Joseph, US Patent No. 3362939 (1968).Google Scholar
  73. 73.
    H. G. Ellert, K. H. Moritz, and L. A. Pine, US Patent No. 3 442 877 (1969).Google Scholar
  74. 74.
    J. R. Kenton and F. T. Wadsworth, US Patent No. 3040009 (1962).Google Scholar
  75. 75.
    A. J. Sandee, J. Chintada, and R. J. Andreas Maria Terörde, US Patent No. 2016 159 941 (2016).Google Scholar
  76. 76.
    N. Azuma and S. Suetomo, US Patent No. 4540480 (1985).Google Scholar
  77. 77.
    B. H. Reesink and W. Dijkstra, US Patent No. 20080 051616 (2008).Google Scholar
  78. 78.
    B. H. Reesink and W. Dijkstra, US Patent No. 7285 695 (2007).Google Scholar
  79. 79.
    Y. Wang, Q. Fu, G. Yang, and J. Chen, CN Patent No. 102 453 217 (2013).Google Scholar
  80. 80.
    B. Bossaert, A. Malatesta, and J. Mourand, EP Patent No. 0 082 726 (1986).Google Scholar
  81. 81.
    B. Bossaert, A. Malatesta, and J. Mourand, US Patent No. 4 629 766 (1986).Google Scholar
  82. 82.
    J. M. Vargas, T. R. Barbee, and Ch. Yuan-Ju, US Patent No. 2013 0 184 411 (2013).Google Scholar
  83. 83.
    F. Yamakawa, T. Kitamura, and T. Chinda, US Patent No. 2005 0 228 143 (2005).Google Scholar
  84. 84.
    R. A. W. Johnstone and A. H. Wilby, Chem. Rev. 85, 129 (1985).CrossRefGoogle Scholar
  85. 85.
    M. L. von Holleben, S. M. Silva, and R. S. Mauler, Polym. Bull. 33, 203 (1994).CrossRefGoogle Scholar
  86. 86.
    C. I. W. Calcagno, Disser. Mestre em Quimica (Universidade Federal do Rio Grande do Sul, Instituto de Quimica, 1997).Google Scholar
  87. 87.
    C. A. Costello, P. J. Wright, D. N. Schulz, and J. A. Sissano, US Patent No. 5 399 632 (1995).Google Scholar
  88. 88.
    M. Takemoto, M. Kajiyama, H. Mizumachi, et al., J. Appl. Polym. Sci. 83, 719 (2002).CrossRefGoogle Scholar
  89. 89.
    M. Takemoto, T. Karasawa, H. Mizumach, and M. Kajiyama, J. Adhesion 72, 85 (2000).CrossRefGoogle Scholar
  90. 90.
    D. Satas, Handbook of Pressure-Sensitive Adhesion Technology, 3rd Ed. (Satas & Associates, Warwick, 1999).Google Scholar
  91. 91.
    T. G. Wood, Adhesive Age 30, 19 (1987).Google Scholar
  92. 92.
    Y. Hu and C. W. Paul, Technology of Pressure-Sensitive Adhesives and Products, Ed. by I. Benedek and M. Feldstein (CRC, Boca Raton, 2009), ch. 3.Google Scholar
  93. 93.
    I. Benedek, Pressure-Sensitive Design, Theoretical Aspects, Ed. by I. Benedek (VSP, Leiden, 2006), ch. 4.Google Scholar
  94. 94.
    Eastotac™ H-100R Resin Technical Datasheet (Eastman Chemical Company, 2014).Google Scholar
  95. 95.
    Regalite™ C6100 Hydrocarbon Resin Technical Datasheet (Eastman Chemical Company, 2008).Google Scholar
  96. 96.
    Regalite™ S1100 Hydrocarbon Resin Technical Datasheet (Eastman Chemical Company, 2012).Google Scholar
  97. 97.
    Regalite™ R1090 Hydrocarbon Resin Technical Datasheet (Eastman Chemical Company, 2012.Google Scholar
  98. 98.
    LESTAC-H5100 Typical Analysis Datasheet (LESCO Chemical, 2014).Google Scholar
  99. 99.
    Escorez 5300 Tackifying Resin: Product Datasheet (Exxon Mobil, 2017).Google Scholar
  100. 100.
    S. G. Hentges, F. C. Jagisch, and E. F. Smith, US Patent No. 5656698 (1997).Google Scholar
  101. 101.
    C. B. Johnson, G. S. Hentges, J. P. Maroie Serge Moise, and R. J. Litz, WO Patent No. 1991013106 (1991).Google Scholar
  102. 102.
    Q. Luvinh, A. V. Macedo, and R. J. F. Rydzkowski, WO Patent No. 9 319 097 (1993).Google Scholar
  103. 103.
    D. Y. Ryu and J. K. Kim, Polymer 41, 5207 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Antonov
    • 1
  • N. N. Petrukhina
    • 1
  • O. A. Pakhmanova
    • 1
  • A. L. Maksimov
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations