Petroleum Chemistry

, Volume 57, Issue 11, pp 947–953 | Cite as

Study of electrodialysis of a copper chloride solution at overlimiting currents

  • E. A. Zhelonkina
  • S. V. Shishkina
  • I. Yu. Mikhailova
  • B. A. Ananchenko


The electrodialysis of a 0.005 M copper(II) chloride solution simulating electroplating wastewater has been studied. Exceeding the limiting current on an MK-40 cation-exchange membrane leads to the precipitation of copper hydroxide on the membrane surface, which acidifies the solution in the concentration compartment by catalyzing the water dissociation reaction. It has been shown that an MA-40 membrane sorbs up to 15 wt % copper as a result of complexation with functional groups. During the electrodialysis at overlimiting currents, the MA-40 membrane becomes a source of protons to the desalting compartments and the membrane resistance increases because of the formation of copper hydroxide and/or oxide in large pores.


ion-exchange membranes overlimiting current complexation water dissociation sparingly soluble precipitates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. Costa, C. W. Klein, A. M. Bernardes, and J. Z. Ferreira, J. Braz. Chem. Soc. 13, 540 (2002).CrossRefGoogle Scholar
  2. 2.
    V. Coman, B. Robotin, and P. Ilea, Resources, Conserv. Recycl., No. 73, 229 (2013).CrossRefGoogle Scholar
  3. 3.
    S. K. Nataraj, K. M. Hosamani, and T. M. Aminabhavi, Desalination 217, 181 (2007).CrossRefGoogle Scholar
  4. 4.
    K. Dermentzis,J. Hazard. Mater. 173, 647 (2010).Google Scholar
  5. 5.
    T. Benvenuti, et al., J. Clean. Prod., 1 (2016).Google Scholar
  6. 6. Scholar
  7. 7.
    Yu. P. Khranilov, Ecology and Electroplating: Problems and Solutions (VyatGTU, Kirov, 2000) [in Russian].Google Scholar
  8. 8.
    P. T. Bolger and D. C. Szlag, Environ. Sci. Technol. 36, 2273 (2002).CrossRefGoogle Scholar
  9. 9.
    C. L. Li, H. X. Zhao, T. Tsuru, et al., J. Membr. Sci. 157, 241 (1999).CrossRefGoogle Scholar
  10. 10.
    I. Fernandez-Olmo, A. Ortiz, A. Urtiaga, and I. Ortiz, J. Chem. Technol. Biotechnol. 83, 1616 (2008).CrossRefGoogle Scholar
  11. 11.
    V. V. Nikonenko, N. D. Pis’menskaya, S. A. Mikhailin, et al., in Proceedings of XIII All-Russia Scientific Conference “MEMBRANES’2016” (Nizhnii Novgorod), p. 34 [in Russian].Google Scholar
  12. 12.
    V. I. Zabolotskii, K. A. Lebedev, M. Kh. Urtenov, et al., Russ. J. Electrochem. 49, 369 (2013).CrossRefGoogle Scholar
  13. 13.
    V. I. Vasil’eva, A. V. Zhil’tsova, M. D. Malykhin, et al., Russ. J. Electrochem. 50, 120 (2014).CrossRefGoogle Scholar
  14. 14.
    S. K. Nataraj, K. M. Hosamani, and T. M. Aminabhavi, J. Appl. Polym. Sci. 99, 1788 (2006).CrossRefGoogle Scholar
  15. 15.
    S. Michaylin and L. Basinet, Adv. Colloid Interface Sci. 229, 34 (2016).CrossRefGoogle Scholar
  16. 16.
    V. A. Shaposhnik and O. A. Kozaderova, Russ. J. Electrochem. 48, 791 (2012).CrossRefGoogle Scholar
  17. 17.
    T. S. Badessa, A. N. Rodionov, and V. A. Shaposhnik, Sorb. Khromatogr. Protsessy 13, 293 (2013).Google Scholar
  18. 18.
    Y. Tanaka, Russ. J. Electrochem. 48, 665 (2012).CrossRefGoogle Scholar
  19. 19.
    V. I. Zabolotskii, V. V. Bugakov, M. V. Sharafan, and R. Kh. Chermit, Russ. J. Electrochem. 48, 650 (2012).CrossRefGoogle Scholar
  20. 20.
    V. V. Ganych, V. I. Zabolotskii, and N. V. Shel’deshov, Elektrokhimiya 28, 1390 (1992).Google Scholar
  21. 21.
    S. V. Shishkina, E. S. Pechenkina, and A. V. Dyukov, Russ. J. Electrochem. 42, 1310 (2006).CrossRefGoogle Scholar
  22. 22.
    S. I. Niftaliev, O. A. Kosaderova, and K. B. Kim, Int. J. Electrochem. Sci. 11, 9057 (2016).CrossRefGoogle Scholar
  23. 23.
    S. Michaylin, V. Nikonenko, G. Pourcelly, and L. Bazinet, J. Membr. Sci. 468, 389 (2014).CrossRefGoogle Scholar
  24. 24.
    T. I. Garshina and L. P. Markova, in Proceedings of Russian Scientific Conference on Ion Transport in Organic and Inorganic Membranes (Tuapse, 2006), p. 44 [in Russian].Google Scholar
  25. 25.
    N. P. Berezina, Physicochemical Properties of Ion-Exchange Materials (Kubanskii Gos. Univ., Krasnodar, 1999) [in Russian].Google Scholar
  26. 26.
    E. Volodina, N. Pismenskaya, V. Nikonenko, C. Larchet, G. Pourcelly, J. Colloid Interface. Sci. 285, 247 (2005).CrossRefGoogle Scholar
  27. 27.
    N. D. Pismenskaya, V. V. Nikonenko, E. I. Belova, et al., Russ. J. Electrochem. 43, 307 (2007).CrossRefGoogle Scholar
  28. 28.
    V. I. Vasil’eva, V. I. Zabolotskii, N. A. Zaichenko, et al., Vestn. Voronezh. Gos. Univ., Ser: Khim. Biol. Farm., No. 2, 7 (2007).Google Scholar
  29. 29.
    V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].Google Scholar
  30. 30.
    H. Remy, Lehrbuch der anorganischen Chemie (Geest & Portig, Leipzig, 1974), Vol. II.Google Scholar
  31. 31.
    S. S. Mel’nikov, O. V. Shapovalova, N. V. Shel’deshov, and V. I. Zabolotskii, Membr. Membr. Tekhnol. 1 (2), 1 (2011).Google Scholar
  32. 32.
    V. I. Zabolotskii, N. V. Shel’deshov, and N. P. Gnusin, Usp. Khim. 57, 1403 (1988).CrossRefGoogle Scholar
  33. 33.
    C. O. Danielsson, A. Dahlkild, A. Velin, and M. Behm, Electrochim. Acta 54, 2983 (2009).CrossRefGoogle Scholar
  34. 34.
    V. I. Vasil’eva, O. V. Grigorchuk, T. S. Botova, V. I. Zabolotskii, K. A. Lebedev, Sorb. Khromatogr. Protsessy 8, 359 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. A. Zhelonkina
    • 1
  • S. V. Shishkina
    • 1
  • I. Yu. Mikhailova
    • 1
  • B. A. Ananchenko
    • 1
  1. 1.Vyatka State UniversityKirovRussia

Personalised recommendations