Petroleum Chemistry

, Volume 57, Issue 11, pp 974–982 | Cite as

Effect of transmembrane pressure on microfiltration concentration of yeast biomass

  • O. A. Kovaleva
  • S. I. Lazarev
  • S. V. Kovalev


An experimental study on the separation of mature molasses broth using a microfiltration unit with a plate-and-frame module has been carried out, and data on the flux and the rejection factor for MMPA+ (P = 0.05 or 0.1 MPa), MPS (P = 0.3 or 0.5 MPa), and MFFK (P = 0.05, 0.1, 0.3, or 0.5 MPa) membranes have been obtained. The revealed relations of the flux to the separation time and the transmembrane pressure for the membranes under study indicate that a dynamic membrane forms during the separation of the molasses broth. This dynamic membrane serves as an additional barrier to the solvent and is eventually compacted to retard yeast cells and polysaccharides and pass more than 80% of ethyl alcohol. The flux for the MFFK and MPS membranes in the separation of mature molasses broth increases with increasing transmembrane pressure, a change that is associated with an increase in the working pressure as the driving force of the process, in contrast to the MMPA+ membrane, whose performance is affected by rapid pore clogging and adsorption phenomena, as well as by the appearance of pressure-induced deformations in the form of profiled lines along and across the membrane. Visual analysis of the spent sample of the MFFK membrane, obtained at P = 0.05 MPa and subjected to flushing the dynamic membrane with distilled water for 1200 s, has revealed that the membrane after disassembling the device shows accumulations of various membrane-forming substances (yeast and polysaccharides) in isolated areas at the exit of the flat channel of the device. It is noted that the closer the outlet of the flat channel of the membrane unit, the darker the areas because of the greater accumulation of the membrane-forming yeast and polysaccharide particles.


microfiltration membrane rejection factor flux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Yarovenko, V. A. Marinchenko, V. A. Smirnov, et al., Alcohol Technology (Kolos-Press, Moscow, 2002) [in Russian].Google Scholar
  2. 2.
    A. V. Onopriiko, V. A. Onopriiko, and N. A. Ryabchenko, Alcohol from Edible Raw Materials: Production, Purification, and Use: A Tutorial (SevKavGTU, Stavropol, 2001) [in Russian].Google Scholar
  3. 3.
    A. K. Dorosh and V. S. Lysenko, Production of Hard Drinks: Feedstock, Equipment, and Technologies of Manufacturing Alcohol and Vodka with Recommendations for Individual Manufacturers (Libid’, Kiev, 1995) [in Russian].Google Scholar
  4. 4.
    V. G. Myronchuk, I. O. Grushevskaya, D. D. Kucheruk, and Yu. G. Zmievskii, Pet. Chem. 53, 439 (2013).CrossRefGoogle Scholar
  5. 5.
    V. M. Sedelkin, A. N. Surkova, O. V. Pachina, et al., Pet. Chem. 56, 367 (2016).CrossRefGoogle Scholar
  6. 6.
    V. V. Biryukov, Fundamentals of Industrial Biotechnology (Kolos, Moscow, 2004) [in Russian].Google Scholar
  7. 7.
    W. J. T. Lewis, Y. M. J. Chew, and M. R. Bird, J. Membr. Sci. 405/406, 113 (2012).CrossRefGoogle Scholar
  8. 8.
    Y. Gençal, E. N. Durmaz, and P. Z. Çulfaz-Emecen, J. Membr. Sci. 476, 224 (2015).CrossRefGoogle Scholar
  9. 9.
    S. M. Lemma, A. Esposito, M. Mason, et al., J. Food Eng. 157, 1 (2015).CrossRefGoogle Scholar
  10. 10.
    E. Gabrus and D. Szaniawska, Desalination 240, 46 (2009).CrossRefGoogle Scholar
  11. 11.
    S. H. Maruf, A. R. Greenberg, J. Pellegrino, and Y. Ding, J. Membr. Sci. 471, 65 (2014).CrossRefGoogle Scholar
  12. 12.
    I. L. Borisov, V. V. Volkov, V. A. Kirsh, and V. I. Roldugin, Pet. Chem. 51, 542 (2011).CrossRefGoogle Scholar
  13. 13.
    I. L. Borisov, P. Yu. Temnikov, and V. V. Volkov, Ser. Krit. Tekhnol. Membr. 48 (4), 16 (2010).Google Scholar
  14. 14.
    G. S. Golubev, I. L. Borisov, E. G. Litvinova, et al., Pet. Chem. 57, 498 (2017).CrossRefGoogle Scholar
  15. 15.
    V. V. Volkov, A. G. Fadeev, V. S. Khotimskii, et al., Ross. Khim. Zh. 47 (6), 71–82 (2003).Google Scholar
  16. 16.
    A. I. Lembovich, N. S. Ruchai, I. N. Kuznetsov, et al., Tr. BGTU: Khim., Tekhnol. Org. Veshchestv Biotekhnol., No. 4, 174 (2014).Google Scholar
  17. 17. Accessed March 21, 2017.Google Scholar
  18. 18. Accessed March 21, 2017.Google Scholar
  19. 19. Accessed March 21, 2017.Google Scholar
  20. 20.
    G. G. Yagafarov, Microorganisms as Producers of Biologically Active Substances: A Textbook (Khimiya, Moscow, 2002) [in Russian].Google Scholar
  21. 21.
    T. P. Zyubr and I. B. Vasil’ev, Use of Ethyl Alcohol in Medicine Drug Production Technology: A Tutorial (IGMU Roszdrava, Irkutsk, 2008) [in Russian].Google Scholar
  22. 22.
    V. L. Yarovenko, B. A. Ustinnikov, Yu. P. Bogdanov, and S. I. Gromov, Handbook of Alcohol Manufacture and Technical Chemistry Control (Legkaya i Pishchevaya Promyshlennost’, Moscow, 1981) [in Russian].Google Scholar
  23. 23.
    A. P. Rukhlyadeva, T. G. Filatova, and V. S. Cherednichenko, Handbook for Alcohol Factory Laboratory Technicians (Pishchevaya Promyshlennost’, Moscow, 1979) [in Russian].Google Scholar
  24. 24.
    V. L. Golovashin, S. I. Lazarev, and A. A. Lavrenchenko, Vestn. Tambov. Gos. Tekh. Univ. 20, 86 (2014).Google Scholar
  25. 25.
    M. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1996).CrossRefGoogle Scholar
  26. 26.
    J. Stopka, S. Schlosser, Z. Domeny, and D. Smogrovicov, Pol. J. Environ. Stud. 9, 65 (2000).Google Scholar
  27. 27.
    S. Subagjo, N. Prasetya, and I. G. Wenten, J. Membr. Sci. Res., No. 1, 79 (2015).Google Scholar
  28. 28.
    L. F. Song, J. Membr. Sci. 139, 183 (1998).CrossRefGoogle Scholar
  29. 29.
    B. Keskinler, E. Yildiz, E. Erhan, et al., J. Membr. Sci. 233, 59 (2004).CrossRefGoogle Scholar
  30. 30.
    M. Ulbricht, W. Ansorge, I. Danielzik, et al., Sep. Purif. Technol. 68, 335 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. A. Kovaleva
    • 1
  • S. I. Lazarev
    • 1
  • S. V. Kovalev
    • 1
  1. 1.Tambov State Technical UniversityTambovRussia

Personalised recommendations