Advertisement

Petroleum Chemistry

, Volume 57, Issue 11, pp 923–928 | Cite as

Synthesis and gas transport properties of polypentafluorostyrene

  • N. A. Belov
  • R. Yu. Nikiforov
  • M. V. Bermeshev
  • Yu. P. Yampolskii
  • E. Sh. Finkelshtein
Article

Abstract

Polypentafluorostyrene (PPFS) (M w = 1.7 × 105 Da, M w /M n = 1.6, and Т g = 110°С) has been synthesized by radical polymerization of pentafluorostyrene. The chemical structure of the polymer has been confirmed by 1H and 19F NMR data. The permeability and diffusion coefficients of gases (He, H2, O2, N2, CO2, and CH4) have been measured on a barometric setup. The permeability, diffusion, and solubility coefficients of gases have been shown to increase with the increases in the fluorine content in the repeat unit of the polymer in the polystyrene–poly(p-fluorostyrene)–PPFS series. Such behavior of transport parameters in the polymer series is associated with the growth in the fractional free volume and decrease in the cohesive energy density. The investigated polymers on the basis of styrene and its derivatives including PPFS are located in the middle of clouds of Robeson diagrams for N2/CH4, CO2/CH4, and O2/N2 and are not of interest for their separation.

Keywords

polypentafluorostyrene permeability diffusion solubility gases free volume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Y. Zhao and H. J. Liu, Polym. Int. 59, 597 (2010).Google Scholar
  2. 2.
    A. Vitale, R. Bongiovanni, and B. Ameduri, Chem. Rev. 115, 8835 (2015).CrossRefGoogle Scholar
  3. 3.
    T. Imae, Curr. Opin. Colloid Interface Sci. 8, 307 (2003).CrossRefGoogle Scholar
  4. 4.
    G. Hougham, P. Cassidy, K. Johns, and J. Davidson, Fluoropolymers: Synthesis and Applications (Plenum, New York, 1999).Google Scholar
  5. 5.
    B. Ameduri and B. Boutevin, Well-Architectured Fluoropolymers: Synthesis, Properties and Applications (Elsevier, Amsterdam, 2004).Google Scholar
  6. 6.
    M. G. Dhara and S. Banerjee, Prog. Polym. Sci. 35, 1022 (2010).CrossRefGoogle Scholar
  7. 7.
    T. C. Merkel, I. Pinnau, R. Prabhakar, and B. D. Freeman, Materials Science of Membranes for Gas and Vapor Separation, Ed. by Yu. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley, Chichester, 2006), p. 251.Google Scholar
  8. 8.
    K. I. Okamoto, et al., J. Polym. Sci., Part B: Polym Phys. 30, 1215 (1992).CrossRefGoogle Scholar
  9. 9.
    J. M. Mohr, D. R. Paul, G. L. Tullos, and P. E. Cassidy, Polymer 32, 2387 (1991).CrossRefGoogle Scholar
  10. 10.
    I. Tkachenko, N. A. Belov, Y. V. Yakovlev, et al., Mater. Chem. Phys. 183, 279 (2016).CrossRefGoogle Scholar
  11. 11.
    A. C. Puleo, N. Muruganandam, and D. R. Paul, J. Polym. Sci., Part B: Polym Phys. 27, 2385 (1989).CrossRefGoogle Scholar
  12. 12.
    Y. Kawakami, H. Karasawa, T. Aoki, et al., Polym. J. 17, 1159 (1985).CrossRefGoogle Scholar
  13. 13.
    Y. Kawakami, T. Sugisaka, and Y. Yamashita, Polym. J. 20, 685 (1988).CrossRefGoogle Scholar
  14. 14.
    Y. Nagasaki, Y. Hashimoto, M. Kato, and T. Kimijima, J. Membr. Sci. 110, 91 (1996).CrossRefGoogle Scholar
  15. 15.
    V. Atanasov, M. Burger, S. Lyonnard, et al., Solid State Ionics 252, 75 (2013).CrossRefGoogle Scholar
  16. 16.
    A. Bondi, Physical Properties of Molecular Crystals, Liquids and Gases (Wiley, New York, 1968).Google Scholar
  17. 17.
    A. A. Askadskii and V. I. Kondrashchenko, Computational Materials Science of Polymers, vol. 1: Atomic and Molecular Levels (Nauchnyi Mir, Moscow, 1999) [in Russian].Google Scholar
  18. 18.
    N. A. Belov, A. Yu. Alentiev, I. A. Ronova, et al., J. Appl. Polym. Sci. 133, 14 (2016).CrossRefGoogle Scholar
  19. 19.
    L. M. Robeson, J. Membr. Sci. 62, 165 (1991).CrossRefGoogle Scholar
  20. 20.
    L. M. Robeson, J. Membr. Sci. 320, 390 (2008).CrossRefGoogle Scholar
  21. 21.
    V. S. Khotimskii, V. G. Filippova, I. S. Bryantseva, et al., J. Appl. Polym. Sci. 78, 1612 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. A. Belov
    • 1
  • R. Yu. Nikiforov
    • 1
  • M. V. Bermeshev
    • 1
  • Yu. P. Yampolskii
    • 1
  • E. Sh. Finkelshtein
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations