Petroleum Chemistry

, Volume 57, Issue 11, pp 961–968 | Cite as

Ion-exchange membranes in gold electowinning processes on flow-through carbon fiber electrodes

  • V. K. Varentsov
  • I. A. Bataev


The change in the properties of ion-exchange membranes preventing the negative effect of anodic reaction products on the electrowinning of gold on carbon fiber cathodes from (1) sulfuric acid thiourea eluates formed during the extraction of gold from ores and (2) citrate–phosphate washing solutions from gold plating of electronic components has been studied. By using electron microscopy, microanalysis, and atomic absorption spectroscopy, it has been shown that the main cause of the change in the properties of the membranes during their operation is the inclusion of components of the solutions subjected to treatment and the products of electrode reactions in the membrane. The service life of the membranes in said processes has been determined.


ion-exchange membranes properties carbon fiber electrodes thiourea sulfate eluates citrate–phosphate solutions electron probe microanalysis electrowinning gold nonferrous metals sulfur 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. K. Varentsov, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 17 (6), 106 (1984).Google Scholar
  2. 2.
    V. K. Varentsov, Khim. Interesah Ustoich. Razvit., No. 2, 147 (1997).Google Scholar
  3. 3.
    V. K. Varentsov, Modern Problems of Technical Electrochemistry: Electrochemical Reactors and Processes with Flow-Through Carbon Electrodes (NGTU, Novosibirsk, 2007) [in Russian].Google Scholar
  4. 4.
    V. K. Varentsov, Modern Problems of Technical Electrochemistry: Electrolysis with Flow-Through Carbon Electrodes in Electroplating (NGTU, Novosibirsk, 2006) [in Russian].Google Scholar
  5. 5.
    A. B. Yaroslavtsev and V. V. Nikonenko, Nanotechnol. Russ. 4, 137 (2009).CrossRefGoogle Scholar
  6. 6.
    I. Gadzhov, D. Lilova, and K. Ignatova, J. Chem. Technol. Metall. 50, 44 (2015).Google Scholar
  7. 7.
    J. Carrillo-Abad, M. Garcia-Gabaldon, and V. Perez-Herranz, Sep. Purif. Technol. 132, 479 (2014).CrossRefGoogle Scholar
  8. 8.
    Y. Zheng, X. Gao, X. Wang, et al., RSC Adv. 5, 19807 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Oztekin and Z. Yazicigil, Desalination 245, 306 (2009).CrossRefGoogle Scholar
  10. 10.
    I. D. Fridman, L. E. Pochkina, and Z. P. Zdorova, Tsvetn. Met. (Moscow), No. 8, 70 (1970).Google Scholar
  11. 11.
    B. N. Laskorin, V. I. Vyalkov, and V. V. Dobroskokin, in Gold Hydrometallurgy (Nauka, Moscow, 1980), p. 76 [in Russian].Google Scholar
  12. 12.
    N. A. Kononenko and N. P. Berezina, Membranes and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013, p. 402 [in Russian].Google Scholar
  13. 13.
    V. K. Varentsov and M. V. Pevnitskaya, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, No. 2, 139 (1972).Google Scholar
  14. 14.
    N. P. Gnusin, N. P. Berezina, L. V. Karpenko, and O. A. Demina, Russ. J. Electrochem. 32, 154 (1996).Google Scholar
  15. 15.
    V. M. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations