Skip to main content
Log in

Membrane technology in bioconversion of lignocellulose to motor fuel components

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The use of lignocellulosic biomass is one of the promising technologies for the production of energy carriers (bioalcohols, biosyngas) and valuable chemicals. Lignocellulosic biofuels may be thought of as a material capable of substantially replacing oil to provide an efficient consumption of natural energy resources and an improvement of the environment. In the “bioreactor–membrane separator–catalytic reactor (converter)" circuit, all stages are considered to be key: (1) the pretreatment of lignocellulose and the development of fermentation, particularly the cultivation of novel strains of bacteria; (2) the design of energyefficient vapor/gas-phase membrane systems for (a) concentrating bioalcohols and (b) controlling the biosyngas composition; and (3) the development of catalyst systems for the conversion of bioalcohols to motor fuel components. The following sequential tasks are discussed in this brief review: (i) basic approaches to the pretreatment of lignocellulosic biomass aimed at preparing it for fermentation and enzymatic processing of lignocellulose, particularly the cultivation of novel strains of bacteria and their communities, to produce bioalcohols— ethanol and butanol—and thermochemical methods of lignocellulose conversion to products in the form of complex mixtures; (ii) the development of energy-efficient membrane concentrating of bioalcohols using hydrophilic and/or organophilic polymer membranes and the control of the composition of synthesis gas in the form of a multicomponent gas mixture using commercial gas-separation membranes; and (iii) the development of catalyst systems exhibiting high selectivity in the ethanol conversion to alkane and aromatic hydrocarbons (high-quality additives to motor fuels) and valuable olefins, particularly ethylene, propylene, and linear alpha-olefins up to C10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ni and Z. Sun, Appl. Microbiol. Biotechnol. 83, 415 (2009).

    Article  CAS  Google Scholar 

  2. E. Green, Curr. Opin. Biotechnol. 22, 337 (2011).

    Article  CAS  Google Scholar 

  3. D. T. Jones and D. R. Woods, Microbiol. Rev. 50, 484 (1986).

    CAS  Google Scholar 

  4. L. Wang and H. Z. Chen, Proc. Biochem. Soc. 46, 604 (2011).

    Article  CAS  Google Scholar 

  5. J. Perez, J. Munoz-Dorado, T. Rubia, and J. Mart?nez, Int. Microbiol. 5, 53 (2002).

    Article  CAS  Google Scholar 

  6. L. Costa Sousa, S. P. Chundawat, V. Balan, and B. E. Dale, Curr. Opin. Biotechnol. 20, 339 (2009).

    Article  Google Scholar 

  7. S. Mafuleka and E. B. G. Kana, Biomass Bioenergy 20, 200 (2015).

    Article  Google Scholar 

  8. E. Hong, D. Kim, J. Kim, et al., Biomass Bioenergy 77, 177 (2015).

    Article  CAS  Google Scholar 

  9. C. Sanchez, Biotechnol. Adv. 27, 185 (2009).

    Article  CAS  Google Scholar 

  10. N. Mosier, C. Wyman, B. Dale, et al., Bioresource Technol. 96, 673 (2005).

    Article  CAS  Google Scholar 

  11. L. P. Ramos, Qunm. Nova 26, 863 (2003).

    Article  CAS  Google Scholar 

  12. L. P. Ramos, C. Breuil, and J. N. Saddler, Appl. Biochem. Biotechnol. 34, 37 (1992).

    Article  Google Scholar 

  13. L. P. Ramos, S. T. Carpes, F. T. Silva, and J. L. M. Ganter, Braz. Arch. Biol. Technol. 43, 195 (2000).

    Article  CAS  Google Scholar 

  14. W. H. Liew, M. H. Hassim, and D. K. S. Ng, J. Clean Prod. 71, 11 (2014).

    Article  CAS  Google Scholar 

  15. J. Shi, M. A. Ebrik, and C. E. Wyman, Bioresource Technol. 102, 8930 (2011).

    Article  CAS  Google Scholar 

  16. C. E. Wyman, B. E. Dale, R. T. Elander, et al., Biotechnol. Prog. 25, 333 (2009).

    Article  CAS  Google Scholar 

  17. S. Tian, W. Zhu, R. Gleisner, et al., Biotechnol. Prog. 27, 419 (2011).

    Article  CAS  Google Scholar 

  18. C. Zhang, X. Lei, C. T. Scott, et al., Bioenerg. Res. 7, 362 (2014).

    Article  CAS  Google Scholar 

  19. A. Oasmaa, Y. Solantausta, V. Arpiainen, et al., Energy Fuels 24, 1380 (2009).

    Article  Google Scholar 

  20. D. Mohan, C. U. Pittman, and P. H. Steele, Energy Fuels 20, 848 (2006).

    Article  CAS  Google Scholar 

  21. A. Brandt, J. Grasvik, J. P. Hallett, and T. Welton, Green Chem. 15, 550 (2013).

    Article  CAS  Google Scholar 

  22. C. Zhang, J. Y. Zhu, R. Gleisner, and J. Sessions, Bioenerg. Res. 5, 978 (2012).

    Article  CAS  Google Scholar 

  23. W. Wei, S. Wu, and L. Liu, Bioresource Technol. 110, 302 (2012).

    Article  CAS  Google Scholar 

  24. Q. A. Nguyen, M. P. Tucker, B. L. Boynton, et al., Appl. Biochem. Biotechnol. 70, 77 (1998).

    Article  Google Scholar 

  25. N. Mosier, C. Wyman, B. Dale, et al., Bioresource Technol. 96, 673 (2005).

    Article  CAS  Google Scholar 

  26. L. Camesasca, M. en Ramirez, G. Mairan, et al., Biomass Bioenergy 74, 193 (2015).

    Article  CAS  Google Scholar 

  27. F. Gao, L. Gao, D. Zhang, et al., Bioresource Technol. 179, 490 (2015).

    Article  CAS  Google Scholar 

  28. B. E. Dale, Biofuels Bioprod. Bioref. 9, 1 (2015).

    Article  CAS  Google Scholar 

  29. L. Vikari, J. Vehmaanpera, and A. Koivula, Biomass Bioenergy 46, 13 (2012).

    Article  Google Scholar 

  30. A. V. Yakovlev, M. G. Shalygin, S. M. Matson, et al., J. Membr. Sci. 434, 99 (2013).

    Article  CAS  Google Scholar 

  31. Handbook Biomass Gasification, Ed. by H. A. M. Knoef, 2nd Ed. (BTG Biomass Technology Group, Enschede, 2012).

  32. International Energy Outlook 2010 (U.S. Energy Information Administration, Washington, DC, 2010).

  33. E. E. Powell and G. A. Hill, Chem. Eng. Res. Des. 87, 1340 (2009).

    Article  CAS  Google Scholar 

  34. P. S. Curtiss and J. F. Kreider, in Proceedings of the ASME 3rd International Conference on Energy Sustainability (ASME, San Francisco, 2009), vol. 1, p. 171.

  35. H. C. Greenwell, L. M. L. Laurens, R. J. Shields, et al., J. R. Soc. Interface 7, 703 (2010).

    Article  CAS  Google Scholar 

  36. A. L. Stephenson, et al., Energy Fuels 24, 4062 (2010).

    Article  CAS  Google Scholar 

  37. A. V. Bridgwater, Biomass Bioenergy 38, 68 (2012).

    Article  CAS  Google Scholar 

  38. F. Collard and J. Blin, Renew. Sustain. Energy Rev. 38, 594 (2014).

    Article  CAS  Google Scholar 

  39. J. Daniell, M. Kopke, and S. Simpson, Energies 5, 5372 (2012).

    Article  CAS  Google Scholar 

  40. X. Xu, E. Jiang, M. Wang, and Y. Xu, Biomass Bioenergy 78, 6 (2015).

    Article  CAS  Google Scholar 

  41. Q. Xie, F. Cabral Borges, Ya. Cheng, et al., Bioresource Technol. 156, 291 (2014).

    Article  CAS  Google Scholar 

  42. B. I. Mikhailov, S. L. Buyantuev, A. B. Mikhailov, and A. B. Khmelev, Vestn. Buryatsk. Gos. Univ., No. 3, 165 (2014).

    Google Scholar 

  43. A. Oudshoorn, A. Luuk, L. Wielen, and A. Straathof, Ind. Eng. Chem. Res. 48, 7325 (2009).

    Article  CAS  Google Scholar 

  44. N. Qureshi, et al., Biotechnol. Prog. 22, 673 (2006).

    Article  CAS  Google Scholar 

  45. D. E. Ramey, US Patent No. 5 753 474 (1998).

    Google Scholar 

  46. V. H. Grisales Diazand G. O. Tost, Bioresource Technol. 218, 174 (2016).

    Article  Google Scholar 

  47. M. G. Shalygin, A. A. Kozlova, A. I. Netrusov, and V. V. Teplyakov, Pet. Chem. 56, 984 (2016).

    Article  Google Scholar 

  48. V. V. Teplyakov and M. G. Shalygin, Pervaporation, Vapour Permeation and Membrane Distillation: Principles and Applications, No. 77 of Woodhead Publishing Series in Energy, Ed. by A. Basile, A. Friolii, and M. Khayet (Elsevier, Amsterdam, 2015), p. 177.

    Book  Google Scholar 

  49. Gas Separation Membranes (NTTs Vladipor). http:// www.vladipor.ru/catalog/&cid=008, 2015. Accessed October 29, 2015.

  50. A. A. Kozlova, M. G. Shalygin, and V. V. Teplyakov, Int. J. Membr. Sci. Technol. 3, 56 (2016).

    Article  Google Scholar 

  51. V. V. Teplyakov and P. Meares, Gas Sep. Purif. 4, 68 (1990).

    Article  Google Scholar 

  52. Materials Science of Membranes for Gas and Vapor Separation, Ed. by Y. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley, Chichester, 2006).

  53. V. V. Teplyakov, O. V. Malykh, O. L. Amosova, et al., Functional Database on Parameters of Permeability of Permanent and Acid Gases, Lower Hydrocarbons, and Toxic Gaseous Impurities through Polymer Materials and Membranes, Certificate, No. 2011 620 549 (2011) [in Russian].

    Google Scholar 

  54. V. V. Teplyakov, V. S. Khotimskii, S. M. Matson, et al., RU Patent No. 2016 146 082 (2016).

    Google Scholar 

  55. M. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1996).

    Book  Google Scholar 

  56. R. W. Baker, Membrane Technology and Applications, 2nd Ed. (Wiley, Chichester, 2004).

    Book  Google Scholar 

  57. A. G. Fadeev, Ya. A. Selinskaya, S. S. Kelley, et al., J. Membr. Sci. 186, 56 (2001).

    Article  Google Scholar 

  58. Separation Technology R&D Needs for Hydrogen Production in the Chemical and Petrochemical Industries. http://www.chemicalvision2020.org/pdfs/h2_report. pdf. Accessed January 20, 2011.

  59. J. A. Ritter and A. D. Ebner, Sep. Sci. Technol. 6, 1123 (2007).

    Article  Google Scholar 

  60. G. Q. Lu, J. C. Diniz da Costa, M. Duke, et al., J. Colloid Interface Sci. 314, 89 (2007).

    Article  Google Scholar 

  61. N. W. Ockwig and T. M. Netoff, Chem. Rev. 107, 4078 (2007).

    Article  CAS  Google Scholar 

  62. S. T. Hwang and K. Kammermeyer, Techniques of Chemistry, vol. 7: Membranes in Separation, (Wiley, New York, 1975).

    Google Scholar 

  63. Yu. I. Dytnerskii, V. P. Brykov, and G. G. Kagramanov, Membrane Gas Separation (Khimiya, Moscow, 1991) [in Russian].

    Google Scholar 

  64. D. A. Syrtsova, A. P. Kharitonov, V. V. Teplyakov, and G.-H. Koops, Desalination 163, 273 (2004).

    Article  CAS  Google Scholar 

  65. O. L. Amosova, Extended Abstract of Candidate’s Dissertation in Chemistry (Moscow, 2011).

    Google Scholar 

  66. V. V. Teplyakov, O. V. Malykh, O. L. Amosova, and R. A. Yastrebov, Computer Program for Calculating Membrane Separation of Multicomponent Gas Mixtures Using Membrane Database with a Function for Calculating Estimates of Lacking Experimental Values,Certificate No. 2011 615 930 (2011).

    Google Scholar 

  67. World Ethanol and Biofuels Report. www.agranet. net/agra/world-ethanol-and-biofuels-report.

  68. I. I. Moiseev, Teor. Eksp. Khim. 46, 360 (2010).

    Google Scholar 

  69. A. Demirbas, Biodiesel: A realistic Fuel Alternative for Diesel Engines (Springer, London, 2008).

    Google Scholar 

  70. S. B. Bankar, S. A. Survase, R. S. Singhal, and T. Granstrom, Bioresource Technol. 106, 110 (2012).

    Article  CAS  Google Scholar 

  71. B. D. Kruzhalov and B. I. Golovanenko, Combined Preparation of Phenol and Acetone (Goskhimizdat, Moscow, 1963) [in Russian].

    Google Scholar 

  72. M. V. Tsodikov, F. A. Yandieva, V. Ya. Kugel, et al., Catal. Lett. 121, 199 (2008).

    Article  CAS  Google Scholar 

  73. F. A. Yandieva, M. V. Tsodikov, A. V. Chistyakov, et al., Kinet. Catal. 51, 548 (2010).

    Article  CAS  Google Scholar 

  74. D. E. Zavelev, A. V. Chistyakov, G. M. Zhidomirov, et al., Kinet. Catal. 57, 95 (2016).

    Article  CAS  Google Scholar 

  75. P. A. Zharova, A. Chistyakov, M. Tsodikov, et al., Chem. Eng. Trans. 43, 415 (2015).

    Google Scholar 

  76. A. V. Chistyakov, P. A. Zharova, A. E. Gekhman, et al., Kinet. Catal. 57, 812 (2016).

    Article  CAS  Google Scholar 

  77. M. V. Tsodikov, A. V. Chistyakov, and A. I. Netrusov, Products from Biomass and Promising Catalytic Reactions for Their Conversion to Fuel Components and Valuable Monomers (LAP Lambert Academic, 2017) [in Russian].

  78. K. Inoue, M. Inaba, I. Takahara, and K. Murata, Catal. Lett. 136, 14 (2010).

    Article  CAS  Google Scholar 

  79. E. Derouane, J. B. Nagy, P. Dejaifve, et al., J. Catal. 53, 40 (1978).

    Article  CAS  Google Scholar 

  80. R. Johansson, S. L. Hruby, J. Rass-Hansen, and C. H. Christensen, Catal. Lett. 127, 1 (2009).

    Article  CAS  Google Scholar 

  81. A. M. Varvarin, K. N. Khomenko, and V. V. Brei, Theor. Exp. Chem. 47, 36 (2011).

    Article  CAS  Google Scholar 

  82. C. W. Ingram and R. J. Lancashire, Catal. Lett. 31, 395 (1995).

    Article  CAS  Google Scholar 

  83. A. T. Aguayo, A. G. Gayubo, A. Atutxa, et al., Ind. Eng. Chem. Res. 41, 4216 (2002).

    Article  CAS  Google Scholar 

  84. M. V. Tsodikov, A. V. Chistyakov, M. A. Gubanov, et al., Pet. Chem. 53, 1 (2013).

    Article  Google Scholar 

  85. A. Chistyakov, M. Gubanov, P. Zharova, and M. Tsodikov, Chem. Eng. Trans. 37, 547 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Teplyakov.

Additional information

Original Russian Text © V.V. Teplyakov, M.G. Shalygin, A.A. Kozlova, A.V. Chistyakov, M.V. Tsodikov, A.I. Netrusov, 2017, published in Membrany i Membrannye Tekhnologii, 2017, Vol. 7, No. 4, pp. 228–246.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teplyakov, V.V., Shalygin, M.G., Kozlova, A.A. et al. Membrane technology in bioconversion of lignocellulose to motor fuel components. Pet. Chem. 57, 747–762 (2017). https://doi.org/10.1134/S0965544117090080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117090080

Keywords

Navigation