Advertisement

Petroleum Chemistry

, Volume 57, Issue 11, pp 929–934 | Cite as

Fabrication of metal–ceramic membranes withstanding extreme operating conditions

  • V. I. Novikov
  • A. G. Muradova
  • A. I. Sharapaev
Article
  • 23 Downloads

Abstract

Preparation of bilayer metal–ceramic membranes with porous stainless steel supports and selective layers based on TiO2 has been described. The resulting membranes have high air and distilled water fluxes. Pressure-hold tests have shown that the experimental samples of stainless steel supports withstand pressure drop up to 1.9 MPa. Toxicological tests showed the possibility of using these membranes in medical industry. These membranes can be used for microfiltration in hot corrosive environments as high-efficiency filters in chemical and microbiological industries and fine filters in food production processes, membrane sterilization, and other fields.

Keywords

composite membranes operating conditions stainless steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Volkov, G. A. Korneeva, and G. F. Tereshchenko, Russ. Chem. Rev. 77, 983 (2008).CrossRefGoogle Scholar
  2. 2.
    J. Yin and B. Deng, J. Membr. Sci. 479, 256 (2015).CrossRefGoogle Scholar
  3. 3.
    A. W. Mohammad, Y. H. Teow, W. L. Ang, et al., Desalination 356, 226 (2015).CrossRefGoogle Scholar
  4. 4.
    E. V. Khataibe, A. N. Nechaev, L. I. Trusov, et al., Krit. Tekhnol. Membr., No. 16, 3 (2002).Google Scholar
  5. 5.
    T. V. Gestel, D. Sebold, W. A. Meulenberg, et al., Solid State Ionics 179, 1360 (2008).CrossRefGoogle Scholar
  6. 6.
    C. Falamaki, M. S. Afarani, and A. Aghaie, J. Eur. Ceram. Soc. 24, 2285 (2004).CrossRefGoogle Scholar
  7. 7.
    E. Levänen and T. Mäntylä, J. Eur. Ceram. Soc. 22, 613 (2002).CrossRefGoogle Scholar
  8. 8.
    Z. Wang. Y.-M. Wei, Z.-L. Xu, and Y. Cao, J. Membr. Sci. 503, 69 (2016).CrossRefGoogle Scholar
  9. 9.
    Z. Song, M. Fathizadeh, I. Huang, and K. H. Chu, J. Membr. Sci. 510, 72 (2016).CrossRefGoogle Scholar
  10. 10.
    Y. Lu, T. Chen, X. Chen, and M. Qiu, J. Membr. Sci. 514, 476 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Khemakhem, S. Khemakhem, and R. Ben Amar, Colloids Surf., A 436, 402 (2013).CrossRefGoogle Scholar
  12. 12.
    B. Nandi, A. Moparthi, R. Uppaluri, and M. Purkait, Chem. Eng. Res. Des. 88, 881 (2010).CrossRefGoogle Scholar
  13. 13.
    L. Zhonghong, Q. Nongxue, and Y. Gongming, J. Membr. Sci. 326, 533 (2009).CrossRefGoogle Scholar
  14. 14.
    W. A. Meulenberg, J. Mertens, M. Bram, et al., J. Eur. Ceram. Soc. 26, 449 (2006).CrossRefGoogle Scholar
  15. 15.
    V. I. Novikov, A. I. Sharapaev, D. A. Korostylev, and A. V. Kuzmin, Theor. Found. Chem. Eng. 50, 822 (2016).CrossRefGoogle Scholar
  16. 16.
    V. V. Nazarov, G. G. Kagramanov, N. G. Medvedkova, and Yu. I. Dytnerskii, RU Patent No. 2088319 (1997).Google Scholar
  17. 17.
    R. Hosseinabadi, S. Wyns, K. V. Meynen, et al., J. Membr. Sci. 454, 496 (2014).CrossRefGoogle Scholar
  18. 18.
    T. Tsuru, M. Narita, R. Shinagawa, and T. Yoshioka, Desalination 233, 1 (2008).CrossRefGoogle Scholar
  19. 19.
    G. Wei, B. Fan, Y. Wei, et al., Desalination 322, 167 (2013).CrossRefGoogle Scholar
  20. 20.
    G. A. Dibrov, V. V. Volkov, V. P. Vasilevsky, et al., J. Membr. Sci. 470, 439 (2014).CrossRefGoogle Scholar
  21. 21.
    V. S. Mitin, V. I. Novikov, A. I. Sharapaev, and A. G. Muradova, Pet. Chem. 56, 243 (2016).CrossRefGoogle Scholar
  22. 22.
    E. G. Arato and A. B. Green, WO Patent No. 1988005330 (1988).Google Scholar
  23. 23.
    M. Tavakolmoghadam M. H. Razzaghi, and A. Safekordi, J. Membr. Sci. 470, 547 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. I. Novikov
    • 1
  • A. G. Muradova
    • 2
  • A. I. Sharapaev
    • 2
  1. 1.MeNaTech Limited Liability CompanyMoscowRussia
  2. 2.Mendeleev University of Chemical TechnologyMoscowRussia

Personalised recommendations