Skip to main content
Log in

Comparison of membrane and conventional reactors under dry methane reforming conditions

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A flow-through catalytic membrane reactor has been experimentally compared with a conventional fixed bed catalytic reactor by matching the specific rate constants in the reaction of dry reforming of methane. Crushed membrane and powdered catalysts with tungsten carbide as the active ingredient have been used as a reference in the conventional reactor. An increase in the reaction rate in the membrane reactor has been explained in terms of emerging Knudsen transport and also by the features of the membrane catalyst, which make it possible to force transport in the pore space of the catalytically active substance. It has been assumed that the “rarefaction” of the gases in the catalyst pores can be accompanied by a change in the equilibrium and a shift in the process toward the products of the direct reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Westermann and T. Melin, Chem. Eng. Process. 48, 17 (2009).

    Article  CAS  Google Scholar 

  2. Membrane Reactors: Distributing Reactants to Improve Selectivity and Yield, Ed. by A. Seidel-Morgenstern (Wiley–VCH, Weinheim, 2010).

  3. J. Bravo, A. Karim, T. Conant, et al., Chem. Eng. J. 101, 113 (2004).

    Article  CAS  Google Scholar 

  4. M. Kajama, N. Nwogu, and E. Gobina, in Proceedings of the World Congress on Engineering (2015), vol. II, p.1.

    Google Scholar 

  5. B. Zhu, H. Li, and W. Yang, Catal. Today 82, 91 (2003).

    Article  CAS  Google Scholar 

  6. D. Fritscha, I. Randjelovica, and F. Keil, Catal. Today 98, 295 (2004).

    Article  Google Scholar 

  7. L. Groschel, R. Haidar, A. Beyer, et al., Ind. Eng. Chem. Res. 44, 9064 (2005).

    Article  Google Scholar 

  8. S. Mucherie, H.-S. Kim, C. L. Marshall, et al., in Proceedings of the 20th North American Meeting (2007).

    Google Scholar 

  9. S. Haag, M. Burgard, and B. Ernst, J. Catal. 252, 190 (2007).

  10. A. Karim, J. Bravo, D. Gorm, et al., Catal. Today 110, 86 (2005).

    Article  CAS  Google Scholar 

  11. Tang S.-B., Qiu F.-L., Lu S.-J. Kinetic studies on methane reforming with carbon dioxide // J. of Natural Gas Chemistry,1997, vol. 6, №1, P.51.

    Google Scholar 

  12. M. E. E. Abashar, Int. J. Hydrogen Energy 29, 799 (2004).

    Article  CAS  Google Scholar 

  13. P. F. van der Oosterkamp, E. S. Wagner, and J. R. H. Ross, Ross. Khim. Zh. 44 (1), 34 (2000).

    Google Scholar 

  14. Woodhead Publishing Series in Energy, No. 76: Membrane Reactors for Energy Applications and Basic Chemical Production, Ed. by A. Basile, L. Di Paola, F. I. Hai, and V. Piemonte (Elsevier, Amsterdam, 2015).

  15. T. V. Bukharkina, N. N. Gavrilova, and V. V. Skudin, Catal. Ind. 7, 253 (2015).

    Article  Google Scholar 

  16. T. V. Bucharkina, N. N. Gavrilova, A. C. Kryzhanovskiy, et al., Pet. Chem. 55, 932 (2015).

    Article  CAS  Google Scholar 

  17. V. V. Skudin and S. G. Strel’tsov, Membrany, No. 2, 22 (2007).

    Google Scholar 

  18. T. Ivanova, K. A. Gesheva, G. Popkirov, et al., Mater. Sci. Eng., B, 119, 232 (2005).

    Article  Google Scholar 

  19. J. B. Claridge, A. P. E. York, A. J. Brungs, et al., J. Catal. 180, 85 (1998).

    Article  CAS  Google Scholar 

  20. A. V. Aleksandrov and N. N. Gavrilova, Usp. Khim. Khim. Tekhnol. 27(2), 47 (2013).

    Google Scholar 

  21. A. V. Aleksandrov, N. N. Gavrilova, V. R. Kislov, et al., in Proceedings of II All-Russia Youth Conference on Advances in Chemical Physics (Granitsa, Moscow, 2013), p. 44 [in Russian].

    Google Scholar 

  22. Z. Chen, P. Prasad, and S. Elnashaie, Fuel Chem. Div. Prepr. 47, 111 (2002).

    CAS  Google Scholar 

  23. I. Chorkendorff and J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, 2nd Ed. (Wiley–VCH, Weinheim, 2003).

    Book  Google Scholar 

  24. O. V. Krylov, Ross. Khim. Zh. 44, 19 (2000).

    CAS  Google Scholar 

  25. M. P. Pina, M. Menendez, and J. Santamaria, Appl. Catal., B 11, 19 (1996).

    Article  Google Scholar 

  26. G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation (Springer, New York, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Skudin.

Additional information

Original Russian Text © A.V. Alexandrov, N.N. Gavrilova, V.R. Kislov, V.V. Skudin, 2017, published in Membrany i Membrannye Tekhnologii, 2017, Vol. 7, No. 4, pp. 293–302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, A.V., Gavrilova, N.N., Kislov, V.R. et al. Comparison of membrane and conventional reactors under dry methane reforming conditions. Pet. Chem. 57, 804–812 (2017). https://doi.org/10.1134/S0965544117090031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117090031

Keywords

Navigation