Abstract
A flow-through catalytic membrane reactor has been experimentally compared with a conventional fixed bed catalytic reactor by matching the specific rate constants in the reaction of dry reforming of methane. Crushed membrane and powdered catalysts with tungsten carbide as the active ingredient have been used as a reference in the conventional reactor. An increase in the reaction rate in the membrane reactor has been explained in terms of emerging Knudsen transport and also by the features of the membrane catalyst, which make it possible to force transport in the pore space of the catalytically active substance. It has been assumed that the “rarefaction” of the gases in the catalyst pores can be accompanied by a change in the equilibrium and a shift in the process toward the products of the direct reaction.
Similar content being viewed by others
References
T. Westermann and T. Melin, Chem. Eng. Process. 48, 17 (2009).
Membrane Reactors: Distributing Reactants to Improve Selectivity and Yield, Ed. by A. Seidel-Morgenstern (Wiley–VCH, Weinheim, 2010).
J. Bravo, A. Karim, T. Conant, et al., Chem. Eng. J. 101, 113 (2004).
M. Kajama, N. Nwogu, and E. Gobina, in Proceedings of the World Congress on Engineering (2015), vol. II, p.1.
B. Zhu, H. Li, and W. Yang, Catal. Today 82, 91 (2003).
D. Fritscha, I. Randjelovica, and F. Keil, Catal. Today 98, 295 (2004).
L. Groschel, R. Haidar, A. Beyer, et al., Ind. Eng. Chem. Res. 44, 9064 (2005).
S. Mucherie, H.-S. Kim, C. L. Marshall, et al., in Proceedings of the 20th North American Meeting (2007).
S. Haag, M. Burgard, and B. Ernst, J. Catal. 252, 190 (2007).
A. Karim, J. Bravo, D. Gorm, et al., Catal. Today 110, 86 (2005).
Tang S.-B., Qiu F.-L., Lu S.-J. Kinetic studies on methane reforming with carbon dioxide // J. of Natural Gas Chemistry,1997, vol. 6, №1, P.51.
M. E. E. Abashar, Int. J. Hydrogen Energy 29, 799 (2004).
P. F. van der Oosterkamp, E. S. Wagner, and J. R. H. Ross, Ross. Khim. Zh. 44 (1), 34 (2000).
Woodhead Publishing Series in Energy, No. 76: Membrane Reactors for Energy Applications and Basic Chemical Production, Ed. by A. Basile, L. Di Paola, F. I. Hai, and V. Piemonte (Elsevier, Amsterdam, 2015).
T. V. Bukharkina, N. N. Gavrilova, and V. V. Skudin, Catal. Ind. 7, 253 (2015).
T. V. Bucharkina, N. N. Gavrilova, A. C. Kryzhanovskiy, et al., Pet. Chem. 55, 932 (2015).
V. V. Skudin and S. G. Strel’tsov, Membrany, No. 2, 22 (2007).
T. Ivanova, K. A. Gesheva, G. Popkirov, et al., Mater. Sci. Eng., B, 119, 232 (2005).
J. B. Claridge, A. P. E. York, A. J. Brungs, et al., J. Catal. 180, 85 (1998).
A. V. Aleksandrov and N. N. Gavrilova, Usp. Khim. Khim. Tekhnol. 27(2), 47 (2013).
A. V. Aleksandrov, N. N. Gavrilova, V. R. Kislov, et al., in Proceedings of II All-Russia Youth Conference on Advances in Chemical Physics (Granitsa, Moscow, 2013), p. 44 [in Russian].
Z. Chen, P. Prasad, and S. Elnashaie, Fuel Chem. Div. Prepr. 47, 111 (2002).
I. Chorkendorff and J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, 2nd Ed. (Wiley–VCH, Weinheim, 2003).
O. V. Krylov, Ross. Khim. Zh. 44, 19 (2000).
M. P. Pina, M. Menendez, and J. Santamaria, Appl. Catal., B 11, 19 (1996).
G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation (Springer, New York, 2005).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.V. Alexandrov, N.N. Gavrilova, V.R. Kislov, V.V. Skudin, 2017, published in Membrany i Membrannye Tekhnologii, 2017, Vol. 7, No. 4, pp. 293–302.
Rights and permissions
About this article
Cite this article
Alexandrov, A.V., Gavrilova, N.N., Kislov, V.R. et al. Comparison of membrane and conventional reactors under dry methane reforming conditions. Pet. Chem. 57, 804–812 (2017). https://doi.org/10.1134/S0965544117090031
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0965544117090031