Skip to main content
Log in

Catalysis in the dispersed phase: Slurry technology in the synthesis of dimethyl ether (Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The world market of dimethyl ether (DME) is rapidly gaining in strength. The review addresses prospects for using the slurry technology in the large-scale world production of DME. The literature and patent data pertaining to the manufacture of dimethyl ether in slurry reactors using finely divided heterogeneous catalysts suspended in inert liquids are generalized. Variants of the slurry technology used in the one-step DME synthesis from syngas and in the two-step DME synthesis (at the stage of dimethyl ether manufacturing via methanol dehydration) are considered. Advantages of the slurry technology over the conventional gas-phase methods of DME production are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Dimethyl Ether Emerging Markets, April 20, 2007. http://www.aboutdme.org/EFIClient/files/ccLibraryFiles/Filename/000000000424/2007_DME_ Seminar_9_Payne_CatalystGroup.pdf. Assessed April 14, 2016.

  2. Dimethyl Ether (Amoco, Haldor Topsøe, and AVL List GmbH), in Proceedings of International Congress and Exposition, Detroit, December 1995. slidespace.ru/show/ 13859. Assessed April 14, 2016.

  3. New Projects of DME production in Khabarovsk. http://www.newchemistry.ru/printletter.php?n_id=9172. Assessed April 14, 2016.

  4. Dimethyl Ether Market by Raw Materials (Coal, Methanol, Natural Gas and Bio-based feedstock), by Applications (Aerosol Propellant, LPG Blending, Transportation Fuel and Others), and by Region—Trends & Forecasts to 2020. http://www.marketsandmarkets. com/PressReleases/dimethyl-ether.asp. Assessed April 14, 2016.

  5. A. M. Arkharov, S. D. Glushkov, L. V. Grekov, A. A. Zverev, N. A. Ivanchenko, D. N. Kalinin, A. V. Sharaburin, and A. A. Aleksandrov, Khim. Neftegaz. Mashinostr. 39, 17 (2003).

    Google Scholar 

  6. Q. Zhang, Y. Tan, C. Yang, H. Xie, Y. Han, J. Ind. Eng. Chem. 19, 975 (2013).

    Article  CAS  Google Scholar 

  7. S. Y. Park, Ch. H. Shin, and J. W. Bae, Catal. Commun. 75, 28 (2016).

    Article  CAS  Google Scholar 

  8. E. Ya. Dittsel’, D. Dzh. Lo, and M. S. Roberts, RU Patent No. 2473535 (2013).

    Google Scholar 

  9. B. Li, J. Xu, B. Han, X. Wang, G. Qi, Z. Zhang, C. Wang, and F. Deng, J. Phys. Chem. C 117, 5840 (2013).

    Article  CAS  Google Scholar 

  10. X. Zhang, Y. P. Li, S. B. Qui, T. J. Wang, M. Y. Ding, Q. Zhang, L. L. Ma, and Y. X. Yu, Chinese J. Chem. Phys. 26, 77 (2013).

    Article  CAS  Google Scholar 

  11. X. Li, X. Liu, S. Liu, S. Xie, X. Zhu, F. Chen, and L. Xu, RSC Advances 3, 16549 (2013).

    Article  CAS  Google Scholar 

  12. X. Zhang, Y. P. Li, S. B. Qui, T. J. Wang, L. L. Ma, Q. Zhang, and M. Y. Ding, Chinese J. Chem. Phys. 26, 220 (2013).

    Article  CAS  Google Scholar 

  13. L. D. Dingwall, A. F. Lee, K. Wilson, J. M. Lynam, L. Olivi, J. M. S. Deeley, S. Gaemers, and G. J. Sunley, ACS Catal. 2, 1368.

  14. M. S. Kazantsev, M. V. Luzgin, G. G. Volkova, and A. G. Stepanov, J. Catal. 291, 9 (2012).

    Article  CAS  Google Scholar 

  15. M. S. Kazantsev, M. V. Luzgin, and A. G. Stepanov, J. Phys. Chem. 117 (21), 11168.

  16. G. G. Volkova, V. D. Belyaev, L. M. Plyasova, and V. A. Sobyanin, RU Patent No. 2286210 (2006).

    Google Scholar 

  17. M. Yang, Y. Men, S. Li, and G. Chen, Intern. J. Hydrogen Energy 37, 8360 (2012).

    Article  CAS  Google Scholar 

  18. M. Yang, Y. Men, S. Li, and G. Chen, Appl. Catal., A 433–434, 26 (2012).

    Article  CAS  Google Scholar 

  19. J. Li, X. Long, Z. T. Liu, Z. W. Liu, Q. J. Zhang, and P. Qi, Chem. Eng. J. 187, 299 (2012).

    Article  CAS  Google Scholar 

  20. L. Zhang, M. Meng, S. Zhou, Z. Sun, J. Zhang, Y. Xie, T. Hu, J. Power Sources 232, 286 (2013).

    Article  CAS  Google Scholar 

  21. Z. Sun, M. Meng, L. Zhang, Y. Zha, X. Zhou, Z. Jiang, S. Zhang, and Y. Huang, Int. J. Hydrogen Energy 37, 18860 (2012).

    Article  CAS  Google Scholar 

  22. X. Long, R. Guo, Z. T. Liu, J. Lu, Z. W. Liu, Q. Zhang, and H. Wang, Catal. Today 210, 75 (2013).

    Article  CAS  Google Scholar 

  23. C. Li, Y. Wang, and P. Fan, Sci. China Chem. 55, 1982 (2012).

    Article  CAS  Google Scholar 

  24. J. Erena, J. Vicente, A. T. Aguayo, M. Olazar, J. Bilbao, and A. G. Gayubo, Appl. Catal. B: Environmental 142–143, 315 (2013).

    Article  CAS  Google Scholar 

  25. J. Vicente, A. G. Gayubo, J. Erena, A. T. Aguayo, M. Olazar, and J. Bilbao, Appl. Catal. B: Environmental 130–131, 73 (2013).

    Article  CAS  Google Scholar 

  26. C. Ledesma and J. Llorca, Fuel 104, 711 (2013).

    Article  CAS  Google Scholar 

  27. I. M. Hill, Y. S. Ng, and A. Bhana, ACS Catal. 2, 1742 (2012).

    Article  CAS  Google Scholar 

  28. A. I. Gritsenko, V. Ya. Lorents, E. V. Slivinskii, V. B. Kubikov, and V. N. Petrov, RU Patent No. 2266893 (2005).

    Google Scholar 

  29. S. N. Khadzhiev, N. V. Kolesnichenko, N. A. Markova, Z. M. Bukina, D. A. Ionin, and R. V. Kulumbegov, RU Patent No. 2442650 (2012).

    Google Scholar 

  30. S. N. Khadzhiev, N. V. Kolesnichenko, G. I. Liin, N.A. Markova, Z. M. Bukina, D. A. Ionin, and G. M. Grafova, RU Patent No. 2442767 (2012).

    Google Scholar 

  31. V. L. Baiburskii, V. V. Vints, V. N. Genkin, M. V. Genkin, I. I. Lishchiner, O. V. Malova, E. S. Mortikov, and S. E. Dolinskii, RU Patent No. 2160160 (2000).

    Google Scholar 

  32. O. V. Malova, I. I. Lishchiner, S. E. Dolinskii, V. A. Plakhotnik, A. N. Kuzmicheva, and K. S. Mortikov, RU Patent No. 2160161 (2000).

    Google Scholar 

  33. N. V. Kolesnichenko, L. E. Kitaev, Z. M. Bukina, N.A. Markova, V. V. Yushchenko, O. V. Yashina, G. I. Lin, and A. Ya. Rozovskii, Kinet. Katal. 48, 846 (2007).

    Article  CAS  Google Scholar 

  34. S. N. Khadzhiev, N. V. Kolesnichenko, T. I. Goryainova, E. N. Biryukova, and R. V. Kulumbegov, RU Patent No. 2445158 (2012).

    Google Scholar 

  35. S. N. Khadzhiev, N. V. Kolesnichenko, T. I. Goryainova, E. N. Biryukova, R. V. Kulumbegov, RU Patent No. 2391135 (2010).

    Google Scholar 

  36. N. V. Kolesnichenko, Z. M. Bukina, O. V. Yashina, I. N. Zavalishin, N. A. Markova, S. N. Khadzhiev, G. I. Lin, A. Ya. Rozovskii, and L. E. Kitaev, RU Patent No. 2323777 (2008).

    Google Scholar 

  37. N. V. Kolesnichenko, E. E. Kolesnikova, L. E. Kitaev, E. N. Biryukova, N. I. Trukhmanova, and S. N. Khadzhiev, Pet. Chem. 52, 155 (2012).

    Article  CAS  Google Scholar 

  38. S. N. Khadzhiev, N. V. Kolesnichenko, E. N. Khivrich, E. E. Kolesnikova, and T. I. Batova, Pet. Chem. 53, 225 (2013).

    Article  CAS  Google Scholar 

  39. A. S. Rodionov, G. N. Shirobokova, G. N. Bondarenko, N. V. Kolesnichenko, and Yu. V. Pavlyuk, Butlerovskie Soobshcheniya 35, 24 (2013).

    Google Scholar 

  40. G. Cai, Z. Liu, R. Shi, Ch. He, L. Yang, Ch. Sun, and Y. Chang, Appl. Catal. A: General 125, 29 (1995).

    Article  CAS  Google Scholar 

  41. Makoto Inomata, Akira Higashi, Yoshiteru Makino, and Yoshinori Mashiko, US Patent No. 6852897 (2005).

    Google Scholar 

  42. Information for LP MeOH Project. Market outlook for dimethyl ether (DME), Topical report, April 2002. www.netl.doe.gov/File%20Library/Research/Coal/ major%20demonstrations/cctdp/Round3/LPMEOH/ DME2_Top.pdf. Assessed April 19, 2016.

  43. T. A. Semelsberger, R. L. Borup, and H. L. Greene, J. Power Sources 156, 497 (2006).

    Article  CAS  Google Scholar 

  44. B. Zhang, W. B. Fu, and J. S. Gong, Fuel 85, 778 (2006).

    Article  CAS  Google Scholar 

  45. Y. Wang, L. B. Zhou, and H. W. Wang, Atmos. Environ. 40, 2313 (2006).

    Article  CAS  Google Scholar 

  46. N. Weidou, Energy of China, 1 (2003). www.cnki. com.cn. Assessed February 15, 2014

    Google Scholar 

  47. Irkutsk oblast owing to the TNK-BP and Sayanskkhimplast project can become the world leader in methyl ether production, IRA Teleinform, 11.02.2004. http://www.dissercat.com/content/issledovanie-termodinamicheskikh-i-kineticheskikh-zakonomernosteiprotsessa-sinteza-dme-i-ra. Assessed April 19, 2016.

  48. J. Perregaard, DME Production Technology Overview, 4th International DME Conference, Hilton Stockholm Slussen, Stockholm, Sweden, 6-9 September, 2010.

    Google Scholar 

  49. Y. Adachi, M. Komoto, I. Watanabe, Y. Ohno, and K. Fujimoto, Fuel 79, 229 (2000).

    Article  CAS  Google Scholar 

  50. E. C. Heydorn, B. W. Diamond, and R. D. Lilly, Final report, Vol. 2: Project performance and economics of Air Products and Chemicals, Inc. and Eastman Chemical Company for U.S. Department of Energy and Air Products Liquid Phase Conversion Company, L. P. (June 2003).

    Google Scholar 

  51. T. H. Hsiung, J. F. White, and J. J. Lewnard, EP Patent No. 0324475 (1993).

    Google Scholar 

  52. C. D. Chang and A. Silvestri, US Patent No. 3894102 (1975).

    Google Scholar 

  53. M. A. Vannice and R. L. Garten, US Patent No. 3941819 (1976).

    Google Scholar 

  54. J. C. Zahner, US Patent No. 4011275 (1977).

    Google Scholar 

  55. G. Pagani, US Patent No. 4098809 (1978).

    Google Scholar 

  56. V. Fattore, G. Manara, and B. Notari, US Patent No. 4177167 (1979).

    Google Scholar 

  57. Huang Yun-Yang, US Patent No. 4328129 (1982).

    Google Scholar 

  58. W. K. Bell, C. D. Chang, and R. Shinnar, US Patent No. 4341069 (1982).

    Google Scholar 

  59. L. H. Slaugh, US Patent No. 4375424 (1983).

    Google Scholar 

  60. R. C. Ryan and L. H. Slaugh, US Patent No. 4417000 (1983).

    Google Scholar 

  61. E. Jorn and J. R. Rostrup-Nielsen, US Patent No. 4481305 (1984).

    Google Scholar 

  62. J. R. Rostrup-Nielsen and A. Skov, US Patent No. 4520216 (1985).

    Google Scholar 

  63. R. Pieranotzzi, US Patent No. 4521540 (1985).

    Google Scholar 

  64. A. Hoek, M. F. M. Post, and J. K. Minderhoud, US Patent No. 4590176 (1986).

    Google Scholar 

  65. T. H.-L. Hsiung, J. F. White, and J. J. Lewnard, EP Patent No. 0409086 (1991).

    Google Scholar 

  66. T. H.-L. Hsiung, J. F. White, and J. J. Lewnard, EP Patent No. 0483609 (1992).

    Google Scholar 

  67. B. L. Bhatt, T. H. Hsiung, J. J. Lewnard, and J. F. White, US Patent No. 5218003 (1993).

    Google Scholar 

  68. G. Jr. Irick, P. N. Mercer, and K. E. Simmons, US Patent No. 5254596 (1993).

    Google Scholar 

  69. K. Fujimoto, T. Shikada, Y. Yamaoka, and T. Sumigama, EP Patent No. 0591538 (1994).

    Google Scholar 

  70. K. Fujimoto, T. Shikada, T. Sumigama, and Y. Yamaoka, US Patent No. 5389689 (1995).

    Google Scholar 

  71. K. Fujimoto, T. Shikada, T. Sumigama, and Y. Yamaoka, US Patent No. 5466720 (1995).

    Google Scholar 

  72. B. Voss, F. Joensen, and J. B. Hansen, WO Patent, 96/23755 (1996).

    Google Scholar 

  73. K. Fujimoto, T. Shikada, Y. Yamaoka, and T. Sumigama, EP Patent No. 0845294 (2003).

    Google Scholar 

  74. J. B. Hansen, F. Joensen, and B. Voss, US patent, No. 5908963 (1999).

    Google Scholar 

  75. X. -D. Peng, B. A. Toseland, and A. W. Wang, US Patent No. 6069180 (2000).

    Google Scholar 

  76. P. J. Battavio, G. E. Pams, X. -D. Peng, and B. A. Toseland, EP Patent, No. 0860414 (1998).

    Google Scholar 

  77. T. Shikada, Y. Ohno, T. Ogawa, M. Mizuguchi, M. Ono, and K. Fujimoto, US Patent No. 6147125 (2000).

    Google Scholar 

  78. J. Haugaard and B. Voss, US Patent No. 6191175 (2001).

    Google Scholar 

  79. K. W. Jun and K. W. Lee, US Patent No. 6248795 (2001).

    Google Scholar 

  80. K. Fujimoto, T. Shikada, Y. Yamaoka, and T. Sumigama, EP Patent No. 1174408 (2002).

    Google Scholar 

  81. X. D. Peng, B. W. Diamond, T.-Ch. R. Tsao, and Bh. L. Bhatt, US Patent No. 6458856 (2002).

    Google Scholar 

  82. T. Shikada, T. Ogawa, M. Mizuguchi, and M. Ono, US Patent No. 6562306 (2003).

    Google Scholar 

  83. T. Shikada, Y. Ohno, O. Takashi, M. Mizuguchi, M. Ono, and K. Fujimoto, US Patent No. 6800665 (2004).

    Google Scholar 

  84. U. G. Yu, Zhao Siyuan, Jin Hanjiang, and Ping Chen, CN Patent No. 1356163, (2002).

    Google Scholar 

  85. T. Shikada, Y. Ohno, O. Takashi, M. Mizuguchi, M. Ono, and K. Fujimoto, US Patent No. 7033972 (2006).

    Google Scholar 

  86. J. Madsen, US Patent No. 7652176 (2010).

    Google Scholar 

  87. T. Rostrup-Nielsen and J. Madsen, US Patent No. 7910630 (2011).

    Google Scholar 

  88. E. Yu. Yuan and Ji, Chang, CN Patent No. 101862685 (2012).

    Google Scholar 

  89. Y. S. Baek, W. J. Cho, Y. B. Yan, Y. G. Mo, K. H. Lee, and E. M. Yang, US Patent No. 8450234 (2013).

    Google Scholar 

  90. Ch. Thaller, H. Schmaderer, A. Tota, N. Schodel, E. Haidegger, and H. Schmigalle, DE Patent No. 102012001804 (2013).

    Google Scholar 

  91. Ch. Thaller, H. Schmaderer, N. Schodel, E. Haidegger, H. Schmigalle, and V. Goke, DE Patent No. 102012001811 (2013).

    Google Scholar 

  92. Yu. C. Li, I. Z. Pan, and Yu. Ch. Chjou, CN Patent No. 101735025 (2013).

    Google Scholar 

  93. A. Ya. Rozovskii, G. I. Lin, and V. S. Sobolevskii, RU Patent No. 2218988 (2003).

    Google Scholar 

  94. V. M. Mysov, K. G. Ione, and V. N. Parmon, RU Patent No. 2143417 (1999).

    Google Scholar 

  95. W. K. Bell and C. D. Chang, US Patent No. 4423155 (1983).

    Google Scholar 

  96. ScienceCo. Huashuo, Ltd., CN Patent No. 1085824 (1994).

    Google Scholar 

  97. ScienceCo. Huashuo, Ltd., CN Patent No. 1087033 (1994).

    Google Scholar 

  98. ScienceCo. Huashuo, Ltd., CN Patent No. 1090222 (1994).

    Google Scholar 

  99. X. D. Peng, G. E. Parris, B. A. Toseland, and P. J. Battavio, US Patent No. 5753716. (1998).

    Google Scholar 

  100. F. Moradi, M. Kazemeini, and M. Fattahi, Petrol. Chem. 11, 323 (2014).

    CAS  Google Scholar 

  101. W.-Z. Lu, L.-H. Teng, and W.-D. Xiao, Chem. Eng. Science 59, 5455 (2004).

    Article  CAS  Google Scholar 

  102. A. Bakopoulos, Chem. Eng. Sci. 61, 538 (2006).

    Article  CAS  Google Scholar 

  103. KOGAS DME Process, Fuels&Materials -Korea, 2012.

  104. Y. Ohno, M. Yoshida, T. Shikada, O. Inokoshi, T. Ogawa, and N. Inoue. www.jfe-steel.co.jp/en/ research/report/008/pdf/008-06.pdf. Accessed April 14, 2016.

  105. R. J. Daroda, J. R. Blackborow, and G. Wilkinson, J. Chem. Soc., Chem. Commun., 1101 (1980).

    Google Scholar 

  106. Z. L. Wang, J. F. Wang, J. Diao, and Yo. Jin, Chem. Res. Eng. Technol. 3 (2001). http://en.cnki.com.cn/Article_ en/CJFDTOTAL-HXFY200103006.htm. Accessed April 14, 2016.

    Google Scholar 

  107. F. Ren and J. F. Wang, Chem. Technol. Market, 2 (2005). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGKB200502004.htm. Accessed April 14, 2016.

    Google Scholar 

  108. G. J. Liu, Z. Li, W. D. Ni, and H. Y. Xu, J. Power Eng. 5 (2006). http://en.cnki.com.cn/Article_en/ CJFDTOTAL-DONG200605028.htm. Accessed April 14, 2016.

    Google Scholar 

  109. W. B. Wu, J. C. Ni, Sh. H. Lin, Zh. W. Lin, J. I. Song, and Sh. T. Yang, J. Zhangzhou Normal University (Natural Science) 4 (2011). http://en.cnki.com.cn/ Article_en/ CJFDTOTAL-ZSXZ201104014.htm. Accessed April 14, 2016.

    Google Scholar 

  110. D. Liu, J. Xu, H. Zhang, and D. Fang, J. Chem. Ind. Eng. (China) 1 (2002). http://en.cnki.com.cn/Article_ en/CJFDTOTAL-HGSZ200201030.htm. Accessed April 14, 2016.

    Google Scholar 

  111. D. H. Liu, X. Hua, and D. Fang, J. East China Univ. Sci. Technol. 2 (2007). http://en.cnki.com.cn/Article_ en/CJFDTOTAL-HLDX200702001.htm. Accessed April 14, 2016.

    Google Scholar 

  112. J. W. Guo, Yu. J. Niu, and B. J. Zhang, Natural Gas Chem. Industry (C1 Chemistry and Technology), 1 (2000). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQH200001001.htm. Accessed April 14, 2016.

    Google Scholar 

  113. G. R. Moradi, J. Ahmadpour, F. Yaripour, and J. Wang, Canadian J. Chem. Eng. 89, 108 (2011).

    Article  CAS  Google Scholar 

  114. Y. Tan, H. Xie, H. Cui, Y. Han, B. Zhong, Catal. Today 104, 25 (2005).

    Article  CAS  Google Scholar 

  115. T. Wang, J. Wang, and Y. Jin, Ind. Eng. Chem. Res. 46, 5824 (2007).

    Article  CAS  Google Scholar 

  116. A. K. Chernyshev, V. A. Daut, A. K. Surba, A. V. Sirotin, V. Ya. Kunitskii, V. N. Makhlai, M. V. Tataryshkin, and K. A. Chernyshev, Ed. By V. A. Daut, Methanol: Properties, Production, and Application, Vol. II (Mezhdunar. Nauchno-inform. kompaniya Infokhim, Moscow, 2011) [in Russian].

    Google Scholar 

  117. Y. Z. Zuo, Q. Zhang, X. An, M. H. Han, T. E. Wang, J. F. Wang, and Y. Jin, Ranliao Huaxue Xuebao 38, 102 (2010).

    CAS  Google Scholar 

  118. Zh. Gao, W. Huang, L. Yin, and K. Xie, Fuel Proc. Technol. 90, 1442 (2009).

    Article  CAS  Google Scholar 

  119. A. V. Sawant, M. K. Ko, V. Parameswaran, S. Lee, and C. J. Kulik, Fuel. Sci. Technol. Int. 5, 77 (1987).

    Article  CAS  Google Scholar 

  120. D. M. Brown, T. H. Hsiung, P. Rao, and G. W. Roberts, US Patent No. 4801574 (1989).

    Google Scholar 

  121. H. J. Kim, H. Jung, and K. Yo. Lee, Korean J. Chem. Eng. 18, 838 (2001).

    Article  CAS  Google Scholar 

  122. D.-Sh. Wang, Y.-Sh. Tan, Yi-Zh. Han, and N. Tsubaki, J. Fuel Chem. Technol. 36, 171 (2008).

    Article  CAS  Google Scholar 

  123. D. Wang, Y. Han, Y. Tan, and N. Tsubaki, Fuel Proc. Technol. 90, 446 (2009).

    Article  CAS  Google Scholar 

  124. J. J. Lewnard, Chem. Eng. Sci. 45, 2735 (1990).

    Article  CAS  Google Scholar 

  125. T. H. Hsiung, Synthesis of Dimethyl Ether from Syngas in a Slurry Reactor, AIChE National Meeting, San Diego, August 19-22, 1990.

    Google Scholar 

  126. S. Ch. Baek, S. H. Kang, J. W. Bae, Y. J. Lee, and K. Y. Lee, Energy Fuels 25, 2438 (2011).

    Article  CAS  Google Scholar 

  127. S. H. Kang, J. W. Bae, H. S. Kim, G. M. Dhar, and K. W. Jun, Energy Fuels 24, 804 (2010).

    Article  CAS  Google Scholar 

  128. Y. J. Lee, M. H. Jung, J. B. Lee, K. E. Jeong, H. S. Roh, Y. W. Sun, and J. W. Bae, Catal. Today 228, 175 (2014).

    Article  CAS  Google Scholar 

  129. S. H. Kang, J. W. Bae, K. W. Jun, and H. S. Potdar, Catal. Commun. 9, 2035 (2008).

    Article  CAS  Google Scholar 

  130. J. W. Bae, S. H. Kang, Y. J. Lee, and K. W. Jun, 2 90 Nos. 3-4, 426.

  131. M. Sliwa, K. Samson, M. Ruggiero-Mikolajczyk, A. Zelanzy, and R. Grabowski, Catal. Letters 144, 1884 (2014).

    Article  CAS  Google Scholar 

  132. H. W. Ham, M. H. Jeong, H. M. Koo, Ch. H. Chung, and J. W. Bae, React. Kinet. Mech. Catal. 116, 173 (2015).

    Article  CAS  Google Scholar 

  133. S. P. Naik, T. R. Ryu, V. Bui, J. D. Miller, N. B. Drinnan, and W. Zmierczak, Chem. Eng. J. 167, 362 (2011).

    Article  CAS  Google Scholar 

  134. Z. Wang, J. Wang, F. Ren, M. Han, and Yo. Jin, Tsinghua Sci. Technol. 9, 168 (2004).

    CAS  Google Scholar 

  135. G. R. Moradi, J. Ahmadpour, and F. Yaripour, Chem. Eng. J. 144, 88 (2008).

    Article  CAS  Google Scholar 

  136. P. Chen, P. Gupta, M. P. Dudukovic, and B. A. Toseland, Chem. Eng. Sci. 61, 6553 (2006).

    Article  CAS  Google Scholar 

  137. S. Papari, M. Kazemeini, and M. Fattahi, J. Natural Gas Chem. 21, 148 (2012).

    Article  CAS  Google Scholar 

  138. Y. Q. Zang, R. Y. Hong, Y. S. Tan, and Y. Z. Han, J. Fuel Chem. Technol. 36, 240 (2006).

    Google Scholar 

  139. D. H. Liu, X. Hua, and D. Y. Fang, J. Nat. Gas Chem. 16, 193 (2007).

    Article  Google Scholar 

  140. Z. Chen, T. H. Zhang, W. Y. Ying, and D. Y. Fang, Front Chem. Eng. China 4, 461 (2010).

    Article  CAS  Google Scholar 

  141. E. C. Heydorn, B. W. Diamond, and R. D. Lilly, Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOHTM) Process, Final report, Vol. 2: Project performance and economics of Air Products and Chemicals, Inc. and Eastman Chemical Company for U.S. Department of Energy and Air Products Liquid Phase Conversion Company, L. P. (June 2003).

    Book  Google Scholar 

  142. T. Ogawa, N. Inoue, T. Shikada, and Y. Ohno, J. Nat. Gas Chem. 12, 79 (2003).

    Google Scholar 

  143. F. Ren, J. F. Wang, and H. S. Li, Stud. Surf. Sci. Catal. 159, 48 (2006).

    Article  CAS  Google Scholar 

  144. DME Development successfully tests 100 ton/day DME direct synthesis demonstration plant, DME Development Co., Ltd., February 26, 2004. www.jfeholdings. co.jp/en/release/2004/040226.htm. Accessed April 5, 2016.

  145. I. H. Kim, S. Kim, E. S. Yoon, and W. Cho, Computer Aided Chem. Eng. 28 (2010).

    Google Scholar 

  146. W. J. Cho, Y. G. Mo, T. Y. Song, H. Ch. Lee, Y. S. Baek, D. Denholm, G. Ko, and Ch. W. Choi, Trans. Korean Hydr. New Energy Soc. 22, 925 (2011).

    Google Scholar 

  147. New technologies of chemical production. http:// www.ntcp.ru/work/news/. Assessed October 20, 2007.

  148. New projects Dimethyl Ether Production, Newchemistry. ru. http://www.newchemistry.ru/letter.php?n_ id=8965. Assessed April 19, 2016.

  149. Masaki Iijima and Kazuto Kobayashi, US Patent No. 6924399 (August 2005).

    Google Scholar 

  150. S. N. Khadzhiev, N. V. Kolesnichenko, and N. N. Ezhova, Pet. Chem. 56, 77 (2016).

    Article  CAS  Google Scholar 

  151. S. Alamolhoda, M. Kazemeini, A. Zaherian, and M. R. Zakerinasab, J. Industr. Eng. Chem. 18, 2059 (2012).

    Article  CAS  Google Scholar 

  152. L. Liu, W. Huang, Z. H. Gao, and L. Y. Yin, J. Industr. Eng. Chem. 18, 123 (2012).

    Article  CAS  Google Scholar 

  153. J. Liu, W. Huang, Z. Gao, and L. Yin, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32, 1379 (2010).

    Article  CAS  Google Scholar 

  154. J. Liu, W. Huang, J. Huang, Z. H. Gao, and L. H. Yin, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34, 682 (2012).

    Article  CAS  Google Scholar 

  155. A. Weizhu, K. T. Chuang, and A. R. Sanger, Can. J. Chem. Eng. 82, 106 (2004).

    Google Scholar 

  156. G. R. Moradi, J. Ahmadpour, and F. Yaripour, Chem. Eng. J. 144, 88 (2008).

    Article  CAS  Google Scholar 

  157. K. M. Parida and A. C. Pradhan, J. Das, and N. Sahu, Mater. Chem. Phys. 113, 244 (2009).

    Article  CAS  Google Scholar 

  158. Z. H. Gao, L. F. Hao, H. Wei, and K. H. Xie, Catal. Lett. 102 (139) (2005).

    Google Scholar 

  159. S. M. Kim, Y. J. Lee, J. W. Bae, H. S. Potdar, and K. W. Jun, Appl. Catal., A 348, 113 (2008).

    Article  CAS  Google Scholar 

  160. H. S. Potdar, K. W. Jun, J. W. Bae, S. M. Kim, and Y. J. Lee, Appl. Catal., A 321, 109 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Ezhova.

Additional information

Original Russian Text © S.N. Khadzhiev, N.N. Ezhova, O.V. Yashina, 2017, published in Nanogeterogennyi Kataliz, 2017, Vol. 2, No. 1, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadzhiev, S.N., Ezhova, N.N. & Yashina, O.V. Catalysis in the dispersed phase: Slurry technology in the synthesis of dimethyl ether (Review). Pet. Chem. 57, 553–570 (2017). https://doi.org/10.1134/S0965544117070040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117070040

Keywords

Navigation