Advertisement

Petroleum Chemistry

, Volume 57, Issue 6, pp 477–482 | Cite as

Fabrication of composite nanofiltration membranes from cellulose solutions in an [Emim]OAc–DMSO mixture

  • T. S. AnokhinaEmail author
  • T. S. Pleshivtseva
  • V. Ya. Ignatenko
  • S. V. Antonov
  • A. V. Volkov
Article

Abstract

The dissolution of cellulose in the [Emim]OAc ionic liquid mixed with DMSO as a cosolvent has been studied, and the possibility of fabricating composite cellulose membranes for the nanofiltration of organic media has been explored. It has been shown that the addition of DMSO to [Emim]OAc leads to a decrease in the dissolution time, which has a minimal value at a solvent ratio of 1 : 1. Composite membranes on a poly(ethylene terephthalate) support have been synthesized. The cellulose content in the casting solution was 6, 8, 12, or 16 wt %. It has been found that the rejection factor of the Remazol Brilliant Blue R dye (626 g/mol) varies from 42 to 82% depending on the composition of the casting solution.

Keywords

cellulose ionic liquids composite membranes organic solvent nanofiltration aprotic solvents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. N. Baker, The Quest for Pure Water: The History of Water Purification from the Earliest Records to the Twentieth Century (American Waterworks Association, Denver, 1948).Google Scholar
  2. 2.
    A. Yoshihiko and M. Akira, J. Appl. Polym. Sci. 84, 2302 (2002).CrossRefGoogle Scholar
  3. 3.
    A. Thekkedath, et al., C. R. Chim. 10, 803 (2007).CrossRefGoogle Scholar
  4. 4.
    Z. Lewandowski, J. Appl. Polym. Sci. 83, 2762 (2002).CrossRefGoogle Scholar
  5. 5.
    H. J. Li, T. M. Cao, J. J. Qin, et al., J. Membr. Sci. 279, 328 (2006).CrossRefGoogle Scholar
  6. 6.
    A. A. Yushkin, T. S. Anokhina, and A. V. Volkov, Pet. Chem. 55, 746 (2015).CrossRefGoogle Scholar
  7. 7.
    T. S. Anokhina, A. A. Yushkin, V. V. Volkov, et al., Phys. Procedia 72, 171 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Pinkert, K. N. Marsh, S. Pang, and M. P. Staiger, Chem. Rev. 109, 6712 (2009).CrossRefGoogle Scholar
  9. 9.
    T. Nishino, I. Matsuda, and K. Hirao, Macromolecules 37, 7683 (2004).CrossRefGoogle Scholar
  10. 10.
    S. L. Williamson, R. S. Armentrout, R. S. Porter, and C. L. McCormick, Macromolecules 31, 8134 (1998).CrossRefGoogle Scholar
  11. 11.
    K. J. Edgar, K. M. Arnold, W. W. Blount, et al., Macromolecules 28, 4122 (1995).CrossRefGoogle Scholar
  12. 12.
    J. F. Masson and R. S. J. Manley, Macromolecules 24, 5914 (1991).CrossRefGoogle Scholar
  13. 13.
    J. F. Masson and R. S. J. Manley, Macromolecules 24, 6670 (1991).CrossRefGoogle Scholar
  14. 14.
    V. V. Vinogradov, O. P. Akaev, and L. N. Mizerovskii, Fibre Chem. 34, 167 (2002).CrossRefGoogle Scholar
  15. 15.
    L. N. Mizerovskii and V. V. Afanas’eva, Khim. Volokna, No. 5, 20 (2002).Google Scholar
  16. 16.
    Y. H. Bang, S. Lee, J. B. Park, and H. H. Cho, J. Appl. Polym. Sci. 73, 2681 (1999).CrossRefGoogle Scholar
  17. 17.
    A. Yoshihiko and M. Akira, J. Appl. Polym. Sci. 84, 2302 (2002).CrossRefGoogle Scholar
  18. 18.
    Z. Lewandowski, J. Appl. Polym. Sci. 83, 2762 (2002).CrossRefGoogle Scholar
  19. 19.
    T. Heinze and T. Liebert, Prog. Polym. Sci. 26, 1689 (2001).CrossRefGoogle Scholar
  20. 20.
    T. Heinze and A. Koschella, Polim: Ciencia Tecnol. 15, 84 (2005).Google Scholar
  21. 21.
    C. Graenacher, US Patent No. 1943176 (1934).Google Scholar
  22. 22.
    A. R. Xu, J. J. Wang, and H. Y. Wang, Green Chem. 12, 268 (2010).CrossRefGoogle Scholar
  23. 23.
    Ionic Liquids: Industrial Applications for Green Chemistry, vol. 818 of ACS Symposium Series, Ed. by R. D. Rogers and K. R. Seddon, (American Chemical Society, Washington, DC, 2002).Google Scholar
  24. 24.
    R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc. 124, 4974 (2002).CrossRefGoogle Scholar
  25. 25.
    T. Heinze, K. Schwikal, and S. Barthel, Macromol. Biosci. 5, 520 (2005).CrossRefGoogle Scholar
  26. 26.
    H. Zhang, J. Wu, J. Zhang, and J. S. He, Macromolecules 38, 8272 (2005).CrossRefGoogle Scholar
  27. 27.
    H. Ma, B. S. Hsiao, and B. Chu, Polymer 52, 2594 (2011).CrossRefGoogle Scholar
  28. 28.
    R. Sescousse, R. Gavillon, and T. Budtova, Carbohydr. Polym. 83, 1766 (2011).CrossRefGoogle Scholar
  29. 29.
    Y. Cao, J. Wu, J. Zhang, et al., Chem. Eng. J. 147, 13 (2009).CrossRefGoogle Scholar
  30. 30.
    Y. Fukaya, K. Hayashi, M. Wada, and H. Ohno, Green Chem. 10, 44 (2008).CrossRefGoogle Scholar
  31. 31.
    P. Maki-Arvela, I. Anugwom, P. Virtanen, et al., Ind. Crops Prod. 32, 175 (2010).CrossRefGoogle Scholar
  32. 32.
    K. Ohira, K. Yoshida, S. Hayase, and T. Itoh, Chem. Lett. 41, 987 (2012).CrossRefGoogle Scholar
  33. 33.
    A. Xu, Y. Zhang, Y. Zhao, and J. Wang, Carbohydr. Polym. 92, 540 (2013).CrossRefGoogle Scholar
  34. 34.
    F. Ibrahim, M. Moniruzzaman, S. Yusup, and Y. Uemura, J. Mol. Liquids 211, 370 (2015).CrossRefGoogle Scholar
  35. 35.
    A. Yoshihiko and M. Akira, J. Appl. Polym. Sci. 84, 2302 (2002).CrossRefGoogle Scholar
  36. 36.
    A. Xu and Y. Zhang, J. Mol. Struct. 1088, 101 (2015).CrossRefGoogle Scholar
  37. 37.
    Z. Lewandowski, J. Appl. Polym. Sci. 83, 2762 (2002).CrossRefGoogle Scholar
  38. 38.
    S. E. Tsar’kov, A. O. Malakhov, E. G. Litvinova, and A. V. Volkov, Pet. Chem. 53, 537 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. S. Anokhina
    • 1
    Email author
  • T. S. Pleshivtseva
    • 1
  • V. Ya. Ignatenko
    • 1
  • S. V. Antonov
    • 1
  • A. V. Volkov
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations