Advertisement

Petroleum Chemistry

, Volume 57, Issue 1, pp 66–70 | Cite as

Naphthalene hydrogenation over nickel–tungsten sulfide catalysts synthesized in situ from DMSO–hydrocarbon medium emulsions

  • I. A. Sizova
  • S. V. Antonov
  • S. I. Serdyukov
  • A. L. Maksimov
Article
  • 44 Downloads

Abstract

A method for synthesizing unsupported nickel–tungsten sulfide hydrodearomatization catalysts by breaking SPAN-80 surfactant-stabilized nonaqueous emulsions of solutions of different precursors in dimethyl sulfoxide (DMSO) in situ in a hydrocarbon medium has been first studied using ammonium thiotungstate (NH4)2WS4 and 1-butyl-1-methylpiperidinium nickel thiotungstate [BMPip]2Ni[WS4]2 as precursors and nickel nitrate hexahydrate as a nickel source. The synthesized nickel–tungsten catalysts have been characterized by TEM and XPS. The catalytic activity of the in situ synthesized Ni–W particles in naphthalene hydrogenation has been studied at temperatures of 350–400°C and a hydrogen pressure of 5.0 MPa.

Keywords

nickel–tungsten sulfide catalysts hydrodearomatization in situ synthesis of catalysts nonaqueous emulsions DMSO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yi, X. Jin, L. Wang, et al., Catal. Today 175, 460 (2011).CrossRefGoogle Scholar
  2. 2.
    A. Olivas, T. A. Zepeda, I. Villalpando, and S. Fuentes, Catal. Commun. 9, 1317 (2008).CrossRefGoogle Scholar
  3. 3.
    S. N. Khadzhiev, Pet. Chem. 51, 1 (2011).CrossRefGoogle Scholar
  4. 4.
    S. N. Khadzhiev, Pet. Chem. 58, 465 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Zdrazil, Catal. Today 3 ((3)), 269 (1988).CrossRefGoogle Scholar
  6. 6.
    K. Wilkinson, M. D. Merchan, and P. T. Vasudevan, J. Catal. 171, 325 (1997).CrossRefGoogle Scholar
  7. 7.
    S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva, Pet. Chem. 54, 323 (2014).CrossRefGoogle Scholar
  8. 8.
    I. Capek, Adv. Colloid Interface Sci. 110, 49 (2004).CrossRefGoogle Scholar
  9. 9.
    P. Pereira, R. Marzin, L. Zacarias, et al., US Patent No. 5 885 441 (1999).Google Scholar
  10. 10.
    I. A. Sizova, S. I. Serdyukov, and A. L. Maksimov, Pet. Chem. 56, 131 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Badawi, J. F. Paul, S. Cristol, et al., J. Catal. 282, 155 (2011).CrossRefGoogle Scholar
  12. 12.
    I. A. Sizova, S. I. Serdyukov, and A. L. Maksimov, Pet. Chem. 55, 468 (2015).Google Scholar
  13. 13.
    J. Ancheyta, Modeling and Simulation of Catalytic Reactors for Petroleum Refining (Wiley, Hoboken, 2011).CrossRefGoogle Scholar
  14. 14.
    W. McDonald, G. D. Friesen, L. D. Rosenhein, and W. E. Newton, Inorg. Chim. Acta 72, 205 (1983).CrossRefGoogle Scholar
  15. 15.
    I. A. Sizova, S. I. Serdyukov, A. L. Maksimov, and N. A. Sinikova, Pet. Chem. 55, 38 (2015).CrossRefGoogle Scholar
  16. 16.
    I. A. Sizova, A. B. Kulikov, M. I. Onishchenko, et al., Pet. Chem. 56, 44 (2016).CrossRefGoogle Scholar
  17. 17.
    I. A. Sizova, A. B. Kulikov, A. V. Zolotukhina, et al., Pet. Chem. 56, 1107 (2016).CrossRefGoogle Scholar
  18. 18.
    C. E. Scott, M. J. Perez-Zurita, L. A. Carbognani, et al., Catal. Today 250, 21 (2015).CrossRefGoogle Scholar
  19. 19.
    H. Nava, C. Ornelas, A. Aguilar, et al., Catal. Lett. 86, 257 (2003).CrossRefGoogle Scholar
  20. 20.
    H. Nava, F. Pedraza, and G. Alonso, Catal. Lett. 99, 65 (2005).CrossRefGoogle Scholar
  21. 21.
    J. Espino, L. Alvarez, C. Ornelas, et al., Catal. Lett. 9, 71 (2003).CrossRefGoogle Scholar
  22. 22.
    S. Nishimura, Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (Wiley, New York, 2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Sizova
    • 1
  • S. V. Antonov
    • 1
  • S. I. Serdyukov
    • 1
    • 2
  • A. L. Maksimov
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations