Abstract
Thin-film membranes based on polyphenylene oxide composites with a varying concentration of heteroarm star-shaped polymers (1, 3, and 5 wt %) comprising arms of polystyrene and poly(2-vinylpyridine)- block-poly(tert-butylmethacrylate) diblock copolymer grafted onto a common fullerene C60 core have been developed. The transport properties of the membranes have been studied in the pervaporation separation of a methanol–ethylene glycol mixture. An increase in the star-shaped polymer content in the membrane leads to an increase in the flux and separation factor of the membranes. Sorption studies have revealed that the sorption activity of methanol in the membranes is higher than that of ethylene glycol. The introduction of star-shaped polymer additives into the membrane composition leads to an increase in the degree of equilibrium sorption of the two components of the mixture subjected to separation. The formation of transport channels in pervaporation membranes during sorption in deuterated methanol has been first studied using the small-angle neutron scattering method. Comparative analysis of the data on neutron scattering on the original dry samples, the samples saturated with deuterated methanol, and the samples dried after sorption has shown that the structural uniformity of the composite membranes is higher than that of the matrix polymer. According to scanning electron microscopy, the morphology of the composite membranes is a system of closed cells.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, et al., Membr. Nanotekhnol. 3 (11), 21 (2008).
Membranes and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013) [in Russian].
K. O. Vishnevskii, A. Yu. Grebenyuk, O. I. Karasev, et al., Forecast of Scientific and Technological Development of Russia: 2030, Ed. by L. M. Gokhberg (Vysshaya Shkola Ekonomiki, Moscow, 2014), ch. 4, p. 111 [in Russian].
C.-T. Wu, K. M. K. Yu, F. Liao, et al., Nat. Commun, No. 3, 1050 (2012).
I. Ghosh, S. K. Sanyal, and R. N. Mukherjea, Ind. Eng. Chem. Res. 28, 757 (1989).
S. K. Ray, S. B. Sawant, J. B. Joshi, and V. G. Pangarkar, J. Membr. Sci. 154, 1 (1999).
M. Khayet, J. P. G. Villaluenga, M. P. Godino, et al., J. Colloid. Interface Sci. 278, 410 (2004).
J. M. Hawkins, A. Meyer, T. A. Lewis, et al., Science 252, 312 (1991).
V. I. Vasil’eva, L. A. Bityutskaya, N. A. Zaichenko, et al., Sorbt. Khromatogr. Protsessy 8, 260 (2008).
G. Gebel and J. Lambard, Macromolecules 30, 7914 (1997).
S. K. Young, S. F. Trevino, and N. C. B. Tan, J. Polym. Sci., Part B: Polym Phys. 40, 387 (2002).
G. Gebel, O. Oliver, and C. Stone, J. New. Mater. Electrochem. Syst. 6, 17 (2003).
K. Schmidt-Rohr and Q. Chen, Nat. Mater. 7, 75 (2008).
G. C. Sanjay, H. R. Bhavika, and S. S. Puyam, RSC Adv. 5, 65862 (2015).
G. Bouglet and C. Ligoure, Eur. Phys. J. 9, 137 (1999).
I. Krakovsky' and N. K. Székely, J. Non-Cryst. Solids 356, 368 (2010).
I. Krakovsky' and N. K. Székely, Eur. Polym. J. 47, 2177 (2011).
Polymer Blends, Ed. By D. R. Paul and S. Newman (Academic, New York, 1978), Vol. 1.
D. Voulgaris, C. Tsitsilianis, F. J. Esselink, and G. Hadzioannou, Polymer 39, 6429 (1998).
D. Voulgaris, C. Tsitsilianis, V. Grayer, et al., Polymer 40, 5879 (1999).
C. Tsitsilianis, D. Voulgaris, M. Stepanek, et al., Langmuir 16, 6868 (2000).
D. Voulgaris and C. Tsitsilianis, Macromol. Chem. Phys. 202, 3284 (2001).
S. Okamoto, H. Hasegawa, T. Hashimoto, et al., Polymer 38, 5275 (1997).
F. L. Beyer, S. P. Gido, D. Uhrig, et al., J. Polym. Sci., Part B: Polym. Phys. 37, 3392 (1999).
H. Hueckstaed, A. Goepfert, and V. Abetz, Macromol. Chem. Phys. 201, 296 (2000).
K. Yamauchi, K. Takahashi, H. Hasegawa, et al., Macromolecules 36, 6962 (2003).
A. Mavroudis, A. Avgeropoulos, N. Hadjichristidis, et al., Chem. Mater. 15, 1976 (2003).
V. T. Lebedev, Gy. Török, and L. V. Vinogradova, Polym. Sci., Ser. A 53, 12 (2011).
T. H. Baker, G. T. Fisher, and J. A. Roth, J. Chem. Eng. Data 9, 11 (1964).
A. F. M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd Ed. (CRC, Boca Raton, FL, 1991).
A. Penkova, G. Polotskaya, and A. Toikka, Chem. Eng. Process. 87, 81 (2015).
G. A. Polotskaya, E. L. Krasnopeeva, and L. V. Vinogradova, RU Patent No. 2 543 203 (2015).
H. C. Benoit, J. Polym. Sci. Lett. Ed. 11, 507 (1953).
D. I. Svergun and L. A. Feigin, Small-Angle X-ray and Neutron Scattering (Nauka, Moscow, 1986) [in Russian].
D. I. Svergun, J. Cryst. 25, 495 (1992).
G. A. Polotskaya, E. L. Krasnopeeva, L. M. Kalyuzhnaya, et al., Sep. Purif. Technol. 143, 192 (2015).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © G.A. Polotskaya, V.T. Lebedev, A.Yu. Pulyalina, L.V. Vinogradova, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 3, pp. 249–261.
Rights and permissions
About this article
Cite this article
Polotskaya, G.A., Lebedev, V.T., Pulyalina, A.Y. et al. Structure and transport properties of pervaporation membranes based on polyphenylene oxide and heteroarm star polymers. Pet. Chem. 56, 920–930 (2016). https://doi.org/10.1134/S0965544116100091
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0965544116100091