Skip to main content
Log in

Gas permeability through poly(4-methyl-1-pentene) at temperatures above and below the glass transition point

Petroleum Chemistry Aims and scope Submit manuscript


Gas separation properties of polymer films based on semicrystalline poly(4-methyl-1-pentene) (PMP) with T g = 30°C for permanent gases and some lower hydrocarbons have been experimentally studied in the temperature range of −20 to 80°C. Experiments have been performed using the differential permeability technique involving the determination of the diffusion coefficient by the characteristic time and functional scaling-up methods. It has been shown that PMP as a biphasic system may be characterized by one diffusion coefficient that includes the contributions of diffusion in the amorphous and crystalline phases. It has also been shown that despite the glass transition (phase transition) at 30°C, the permeability coefficients of the test gases exponentially increase with gas temperature and the temperature dependence curves do not exhibit an inflection in the glass transition region. On the other hand, the Arrhenius plots of the diffusion coefficients show a bend over the entire glass transition range in PMP, with the activation energy of diffusion decreasing with an increase in temperature. This fact demonstrates the unusual, earlier unknown effect of increasing activation energy of diffusion E D for gases below T g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. L. C. Lopez, G. L. Wilkes, P. M. Stricklen, and S. A. White, J. Macromol. Sci., Rev. Macromol. Chem. Phys. 32, 301 (1992).

  2. J. Wang, Z. Xu, and Y. Xu, Chin. J. Polym. Sci. 21, 369 (2003).

    Google Scholar 

  3. R. Abedini, M. Omidkhah, and F. Dorosti, Int. J. Hydrogen Energy 39, 7897 (2014).

    Article  CAS  Google Scholar 

  4. G. Zhang, E. Baer, and A. Hilter, Polymer 54, 4298 (2013).

    Article  CAS  Google Scholar 

  5. F.-C. Lin, D.-M. Wang, and J.-Y. Lai, J. Membr. Sci. 110, 25 (1996).

    Article  CAS  Google Scholar 

  6. US Patent No. 4,421,529 (1983).

  7. US Patent No. 3,798,185 (1974).

  8. A. Wolinska-Grabczyk, A. Jankowski, R. Sekula, and B. Kruczek, Sep. Sci. Technol. 46, 1231 (2011).

    Article  CAS  Google Scholar 

  9. Mitsui Chemicals, inc. Performance Polymers Dept. Information and electronics materials div. Japan, 2007. pdf/polymer_e.pdf.

  10. H. J. Michaels and H. J. Bixler, J. Polym. Sci. 50, 393 (1961).

    Article  CAS  Google Scholar 

  11. V. V. Teplyakov, Doctoral Dissertation in Chemistry (Moscow, 1991).

    Google Scholar 

  12. I. I. Tugov and G. I. Kostrykina, Polymer Physics and Chemistry Textbook (Khimiya, Moscow, 1989).

    Google Scholar 

  13. V. I. Kleiner, S. M. Shishatskii, Yu. P. Yampol’skii, et al., Vysokomol. Soedin., Ser. A 35, 1679 (1993).

    CAS  Google Scholar 

  14. R. Hasegara, Y. Tanabe, M. Kobayashi, et al., J. Polym. Sci., Part A-2: Polym. Phys. 8, 1073 (1970).

    Article  Google Scholar 

  15. B. A. Krentsel, Y. V. Kissin, V. J. Kleiner, and L. L. Stotskaya, Polymers and Copolymers of Higher a- Olefins (Hanser/Gardner, Cincinnati, 1997).

    Google Scholar 

  16. J. L. White and D. D. Choi, Polyolefins: Processing, Structure, Development and Properties (Carl Hanser, Munich, 2004).

    Book  Google Scholar 

  17. H. Kusanagi, M. Takase, Y. Chatani, and H. Tadakoro. J. Polym. Sci., Part B: Polym. Phys. 16, 131 (1978).

    CAS  Google Scholar 

  18. A. C. Puleo, D. R. Paul, and P. K. Wong, Polymer 30, 1357 (1989).

    Article  CAS  Google Scholar 

  19. T. Suzuuki, T. Tanaka, M. Nakajima et al., Polymer, 34, 891 (2002).

    Article  Google Scholar 

  20. Y. Tsujita, Chin. J. Polym. Sci. 1, 301 (2000).

    Google Scholar 

  21. V. V. Zhmakin and V. V. Teplyakov, Membr. Membr. Tekhnol., No. 1, 64 (2016).

    Google Scholar 

  22. I. N. Beckman, The Mathematics of Diffusion: A Student’s Guide (Ontoprint, Moscow, 2016) [in Russian].

    Google Scholar 

  23. V. V. Beckman and V. V. Teplyakov, Adv. Colloid Interface Sci. 222, 70 (2015).

    Article  CAS  Google Scholar 

  24. N. M. Nikolaev, Diffusion in Membranes (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  25. V. V. Teplyakov and P. Meares, Gas Sep. Purif. 4, 66 (1990).

    Article  CAS  Google Scholar 

  26. O. V. Malykhm A. Yu. Golub, and V. V. Teplyakov, Adv. Colloid Interface Sci. 164, 89 (2011).

    Article  Google Scholar 

  27. J. H. Grifith and B. G. Ranby, J. Polym. Sci. 44, 369 (1960).

    Article  Google Scholar 

  28. Polymer Handbook, Ed. by J. Brandrup and E. H. Immergut (Wiley–Interscience, New York, 1989). 3rd Ed.

  29. P. Meares, J. Polym. Sci., 101 (1956).

    Google Scholar 

  30. P. Meares, J. Polym. Sci., 3415 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Yu. Markova.

Additional information

Original Russian Text © S.Yu. Markova, N.M. Smirnova, V.V. Teplyakov, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 3, pp. 283–291.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markova, S.Y., Smirnova, N.M. & Teplyakov, V.V. Gas permeability through poly(4-methyl-1-pentene) at temperatures above and below the glass transition point. Pet. Chem. 56, 948–955 (2016).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: