Skip to main content
Log in

On the rheology of oil (Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Current ideas concerning oil rheology, in particular, that of heavy oils and water–oil emulsions have been considered. It has been shown that petroleum in general is a viscoplastic medium, whose rheological properties in many cases are satisfactorily described in terms of the simple Bingham model. Typical characterization of rheological properties reduces to measurement of the yield point and the pour point and to conditional values obtained by measuring viscosity in viscometers of various types. However, both the yield stress and plastic viscosity are structurally sensitive, resulting in dependence of the rheological properties of oil on the temperature and deformation history, including the kinetics of cooling, which is characterized by a hysteresis curve in the measurement of viscosity. The kinetics of change in the rheological properties of oil depends on the concentration of crystallizable paraffins and other components. Rheology is modified largely by introducing pour point depressants into the oil. Another method for controlling the rheological properties of oil is to convert it into the state of water–oil emulsion using various surfactants. The general formulation of the problem of pipeline oil transport has been discussed, involving calculation based on the knowledge of both the rheological properties of oil and the kinetics of transient structuring processes. The latter is especially important for start-up modes of pipeline operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Conaway, The Petroleum Industry: A Nomenclature Guide (Pennwell, Tulsa, 1999).

    Google Scholar 

  2. GOST (State Standard) 20287-91: Petroleum Products: Methods of Test for Flow Point and Pour Point (Standartinform, Moscow, 2006); ASTM D5853-95; ISO 3016.

  3. V. F. Nikolaev, A. V. Egorov, M. A. Vasin, and I. V. Nikolaev, Zavod. Lab. Diagn. Mater. 78, 312 (2012).

    Google Scholar 

  4. D. W. Jennings and K. Weispfennig, Energy Fuels 19, 1376 (2005).

    Article  CAS  Google Scholar 

  5. R. Freedman, N. Heaton, M. Flaum, et al., SPE J. 8, 317 (2003).

    Article  CAS  Google Scholar 

  6. J. Bryan, A. Kantzas, and C. Bellehumeur, Viscosity predictions from low-field NMR measurements, in Proceedings of SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA (2002), Paper No. 89070.

    Google Scholar 

  7. S. Chen, G. Øye, and J. Sjöblom, Annu. Trans. Nordic Rheol. Soc. 14, 159 (2006).

    CAS  Google Scholar 

  8. K. Moussa, M. Djabourov, and J.-L. Volle, Fuel 83, 1591 (2004).

    Article  Google Scholar 

  9. A. Japper-Jaafar, P. T. Bhaskoro, L. L. I. Sean, et al., J. Non-Newton. Fluid Mech. 218, 71 (2015).

    Article  CAS  Google Scholar 

  10. M. T. Ghannam, S. W. Hasan, B. Abu-Jdayil, and N. Esmail, J. Pet. Sci. Eng. 81, 122 (2012).

    Article  CAS  Google Scholar 

  11. B. A. Tarcha, B. P. P. Forte, E. J. Soares, and R. L. Thompson, Rheol. Acta, 54, 479 (2015).

    Article  CAS  Google Scholar 

  12. O. Coussot, J. Non-Newton. Fluid Mech. 211, 31 (2014).

    Article  CAS  Google Scholar 

  13. L. Hou, Rheol. Acta 51, 603 (2012).

    Article  CAS  Google Scholar 

  14. H. P. Rønningsen, J. Pet. Sci. Eng. 7, 177 (1992).

    Article  Google Scholar 

  15. C. Chang, D. V. Boger, and Q. D. Nguyen, SPE J. 5, 148 (2000).

    Article  Google Scholar 

  16. C. H. Wu, K. S. Wang, P. J. Shuler, et al., AIChE J. 48, 2107 (2002).

    Article  CAS  Google Scholar 

  17. B. Jia and J. Zhang, Ind. Eng. Chem. Res. 51, 10982 (2012).

    Google Scholar 

  18. J. A. L. Silva and J. A. P. Coutinho, Rheol. Acta 43, 433 (2004).

    Article  Google Scholar 

  19. R. M. Webber, J. Rheol. 43, 911 (1999).

    Article  CAS  Google Scholar 

  20. P. Singh, H. S. Fogler, and N. Nagarajan, J. Rheol. 43, 1427 (1999).

    Article  Google Scholar 

  21. J. Sestak M. E. Charles, M. G. Cawkwell, and M. Houska, J. Pipelines 6, 15 (1987).

    Google Scholar 

  22. M. M. Denn and D. Bonn, Rheol. Acta. 50, 307 (2011).

    Article  CAS  Google Scholar 

  23. C. J. Dimitriou, G. H. McKinley, and R. Venkatesan, Energy Fuels 25, 3040 (2011).

    Article  CAS  Google Scholar 

  24. C. Pierre, L. Barré, A. Pina, and M. Moan, “Oil Gas Sci. Technol.—Rev. IFP 59, 489 (2004).

    Article  CAS  Google Scholar 

  25. R. S. Mohamed and A. C. S. Ramos, Energy Fuels 13, 323 (1999).

    Article  CAS  Google Scholar 

  26. R. Kumar, S. Mohapatra, A. Mandal, and T. K. Naiya, J. Pet. Sci. Res. 3, 90 (2014).

    Article  Google Scholar 

  27. M. Meriem-Benziane and H. Zahloul, Int. J. Mech. Aerospace Ind. Mechatron. Eng. 7, 223 (2013).

    Google Scholar 

  28. D. Broboana and C. Balan, U.P.B. Sci. Bull., Ser. B 69, 35 (2007).

    CAS  Google Scholar 

  29. R. Venkatesan, N. R. Nagarajan, K. Paso, et al., Chem. Eng. Sci. 60, 3587 (2005).

    Article  CAS  Google Scholar 

  30. A. Malkin, S. Ilyin, T. Roumyantseva, and V. Kulichikhin, Macromolecules 46, 257 (2013).

    Article  CAS  Google Scholar 

  31. G. Ovarlez, S. Rodts, X. Chateau, and O. Coussot, Rheol. Acta 48, 831 (2009).

    Article  CAS  Google Scholar 

  32. S. Lerouge and J.-F. Berret, Adv. Polym. Sci. 230, 1 (2010).

    Article  CAS  Google Scholar 

  33. J. P. Garsía-Sandoval, O. Manero, F. Bautista, and J. E. Puig, J. Non-Newton. Fluid Mech. 179/180, 43 (2012).

    Article  Google Scholar 

  34. R. L. Moorcroft and S. M. Fielding, Phys. Rev. Lett. 110, 086001 (2013).

    Article  Google Scholar 

  35. B. E. Wyskouzil, M. A. Kesslick, and J. H. Masliyah, Can. J. Chem. Eng. 65, 353 (1987).

    Article  Google Scholar 

  36. J. L. Zakin, R. Pinaire, and M. E. Borgmeyer, J. Fluid Eng. 101, 100 (1979).

    Article  CAS  Google Scholar 

  37. G. Nunez, M. Briceno, C. Mata, et al., J. Rheol. 40, 405 (1996).

    Article  CAS  Google Scholar 

  38. J. Sjöblom, N. Aske, I. H. Auflem, et al., Adv. Colloid Interface Sci. 100–102, 399 (2002).

    Google Scholar 

  39. A. P. Sullivan and P. K. Kilpatrick, Ind. Eng. Chem. Res. 41, 3389 (2002).

    Article  CAS  Google Scholar 

  40. I. Masalova and A. Ya. Malkin, Colloid J. 70, 362 (2008).

    Article  Google Scholar 

  41. R. Foudazi, S. Qavi, I. Masalova, and A. Ya. Malkin, Adv. Colloid Interface Sci. 220, 78 (2015).

    Article  CAS  Google Scholar 

  42. C. Barbato, B. Nogueira, M. Khalil, et al., Energy Fuels 28, 1717 (2014).

    Article  CAS  Google Scholar 

  43. C. van der Geest, V. C. B. Guersoni, D. Merino-Garcia, and A. C. Bannwart, Rheol. Acta 54, 545 (2015).

    Article  Google Scholar 

  44. P. R. de Souza-Mendes and R. L. Thompson, Rheol. Acta 52, 673 (2013).

    Article  Google Scholar 

  45. H. P. Ronningsen, J. Pet. Sci. Eng. 7, 177 (1992).

    Article  Google Scholar 

  46. M. R. Davidson, Q. D. Nguyen, C. Chang, and H. P. Ronningsen, J. Non-Newton. Fluid Mech. 123, 269 (2004).

    Article  CAS  Google Scholar 

  47. A. Wachs, G. Vinay, and I. Frigaard, J. Non-Newton. Fluid Mech. 159, 81 (2009).

    Article  CAS  Google Scholar 

  48. A. Ya. Malkin, Polym. Eng. Sci. 20, 1035 (1980).

    Article  CAS  Google Scholar 

  49. G. Vinay, A. Wachs, and J.-F. Agassant, J. Non-Newton. Fluid Mech. 128, 144 (2005).

    Article  CAS  Google Scholar 

  50. G. Vinay, A. Wachs, and J.-F. Agassant, J. Non-Newton. Fluid Mech. 136, 93 (2006).

    Article  CAS  Google Scholar 

  51. G. Vinay, A. Wachs, and I. Frigaard, J. Non-Newton. Fluid Mech. 143, 141 (2007).

    Article  CAS  Google Scholar 

  52. A. Ahmadpour, K. Sadeghy, and S.-R. MaddahSadatieh, J. Non-Newton. Fluid Mech. 205, 16 (2014).

    Article  CAS  Google Scholar 

  53. M. Fossen, T. Øyangen, and O. J. Velle, Energy Fuels 27, 3685 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Malkin.

Additional information

Original Russian Text © A.Ya. Malkin, S.N. Khadzhiev, 2016, published in Neftekhimiya, 2016, Vol. 56, No. 4, pp. 303–314.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkin, A.Y., Khadzhiev, S.N. On the rheology of oil (Review). Pet. Chem. 56, 541–551 (2016). https://doi.org/10.1134/S0965544116070100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116070100

Keywords

Navigation