Skip to main content
Log in

An atomic force microscopy study of hybrid polymeric membranes: Surface topographical analysis and estimation of pore size distribution

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The surface morphology of polymeric membranes as organic–inorganic block copolymers has been studied by atomic force microscopy (AFM). These hybrid block copolymers have been obtained by the polyaddition of toluene 2,4-diisocyanate to macroinitiators and the addition of oligomeric polyhedral оctaglycidyl silsesquioxane (Gl-POSS) as a bulky branching agent in a concentration range of 0.1–15 wt %. The AFM study of the morphology made it possible to determine the main roughness parameters and to perform topographical analysis of the surface of the polymers. The pore size distribution was evaluated by histogrammic approximation with the use of the Gauss distribution. The hypothesis of the normalcy of distribution of the experimental sample of pore diameters was confirmed by a combined criterion and Pearson’s chi-square goodness-of-fit test. The effect of the Gl-POSS concentration on the surface morphology and the microstructure of the organic–inorganic polymeric membranes was found to be nonmonotonic over the test concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. V. M. Vorotyntsev, Pet. Chem. 55, 259 (2015).

    Article  CAS  Google Scholar 

  2. Yu. P. Yampolskii, L. E. Strannikova, and N. A. Belov, Pet. Chem. 54, 637 (2014).

    Article  CAS  Google Scholar 

  3. R. D. Noble, J. Membr. Sci. 378, 393 (2011).

    Article  CAS  Google Scholar 

  4. G. Kickelbick, Prog. Polym. Sci. 28, 83 (2003).

    Article  CAS  Google Scholar 

  5. I. M. Davletbaeva, O. Yu. Emelina, I. V. Vorotyntsev, et al., R. Chem. Soc. Adv. 5, 65674 (2015).

    CAS  Google Scholar 

  6. I. M. Davletbaeva, V. F. Shkodich, A. M. Gumerov, et al., Polym. Sci., Ser. A 52, 392 (2010).

    Article  Google Scholar 

  7. I. M. Davletbaeva, A. I. Akhmetshina, R. S. Davletbaev, et al., Polym. Sci., Ser. B 56, 814 (2014).

    Article  CAS  Google Scholar 

  8. R. Davletbaev, A. Akhmetshina, A. Gumerov, et al., Compos. Interfaces 21, 611 (2014).

    Article  CAS  Google Scholar 

  9. R. Tamime, Y. Wyart, L. Siozade, et al., Membranes 1, 91 (2011).

    Article  CAS  Google Scholar 

  10. L. Germic, K. Ebert, R. H. B. Bouma, et al., J. Membr. Sci. 132, 131 (1997).

    Article  CAS  Google Scholar 

  11. S. Nakao, J. Membr. Sci. 96, 131 (1994).

    Article  CAS  Google Scholar 

  12. A. Hernandez, J. I. Calvo, P. Pradanos, and L. Palacio, Surface Chemistry and Electrochemistry of Membranes, Ed. by T. S. Sorenson (Marcel Dekker, New York, 1999), p. 39.

  13. Yu. M. Volfkovich, A. N. Filippov, and V. S. Bagotsky, Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology (Springer, London, 2014).

    Book  Google Scholar 

  14. T. S. Chung, J. J. Qin, A. Huan, and K. C. Toh, J. Membr. Sci. 196, 251 (2002).

    Article  CAS  Google Scholar 

  15. J. I. Calvo, A. Bottino, G. Cappanelli, et al., J. Membr. Sci. 239, 189 (2004).

    Article  CAS  Google Scholar 

  16. I. I. Zaripov, I. M. Davletbaeva, A. I. Mazil’nikov, et al., in Proceedings of the Fifth International Conference on Chemistry and Physical Chemistry of Oligomers “Oligomers-2015”: Book of Abstracts (Volgograd, 2015), p. 143 [in Russian].

    Google Scholar 

  17. I. Davletbaeva, I. Zaripov, A. Mazliniko, et al., in Euromembrane-2005 Book of Abstracts (Aachen, 2015), p. E-059.

    Google Scholar 

  18. C. Agarwal, A. K. Pandey, S. Das, et al., J. Membr. Sci. 415/416, 608 (2012).

    Article  Google Scholar 

  19. ISO 4287/1: Surface Roughness (1984).

  20. A. Yu. Khanukaeva and A. N. Filippov, Membr. Membr. Tekhnol. 3 (3), 210 (2013).

    Google Scholar 

  21. A. Yu. Khanukaeva, A. N. Filippov, and A. V. Bil’-dyukevich, Pet. Chem. 54, 498 (2014).

    Article  CAS  Google Scholar 

  22. GOST (State Standard) 8.207-76: Direct Measurements with Multiple Observations: Methods of Processing the Results of Observations: Basic Principles (Standartinfrom, Moscow, 2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Sazanova.

Additional information

Original Russian Text © T.S. Sazanova, I.V. Vorotyntsev, V.B. Kulikov, I.M. Davletbaeva, I.I. Zaripov, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 2, pp. 166–175.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazanova, T.S., Vorotyntsev, I.V., Kulikov, V.B. et al. An atomic force microscopy study of hybrid polymeric membranes: Surface topographical analysis and estimation of pore size distribution. Pet. Chem. 56, 427–435 (2016). https://doi.org/10.1134/S096554411605011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554411605011X

Keywords

Navigation