Skip to main content
Log in

Hybrid membranes based on silica and 2-hydroxyethylmethacrylate–4-vinylpyridine copolymers

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

4-Vinylpyridine–2-hydroxyethylmethacrylate copolymers have been synthesized by radical copolymerization. The composition and properties of the copolymers have been studied; the reactivity constants of the comonomers have been calculated. Sol–gel synthesis involving the resulting copolymers and tetraethoxysilane has yielded hybrid membranes comprising a polymer matrix with uniformly distributed hydrated silica particles and exhibiting a proton conductivity of up to 1.85 × 10−2 S/cm, an ion-exchange capacity of 2.1 meq/g, a heat resistance of 412°С, a tensile strength of 55.5 MPa, an elongation at break of 15%, and a proton-conductivity activation energy of 12 ± 2 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M. Cazacu, S. Dragan, and A. Vlad, J. Appl. Polym. Sci. 88, 2060 (2003).

    Article  CAS  Google Scholar 

  2. A. Bandyopadhyay, M. de Sarkar, and A. K. Bhowmick, J. Mater. Sci. 40, 5233 (2005).

    Article  CAS  Google Scholar 

  3. T. Salesch, S. Bachmann, S. Brugger, et al., Adv. Funct. Mater. 12, 134 (2002).

    Article  CAS  Google Scholar 

  4. H. Onizuka, M. Kato, T. Shimura, et al., J. Sol-Gel Sci. Technol. 46, 107 (2008).

    Article  CAS  Google Scholar 

  5. D. Marani, M. L. di Vona, E. Traversa, et al., J. Phys. Chem. B 110, 15817 (2006).

    Article  CAS  Google Scholar 

  6. K. Tadanaga, H. Yoshida, A. Matsuda, et al., Electrochim. Acta 50, 705 (2004).

    Article  CAS  Google Scholar 

  7. G. Hernandez-Padron, F. Rojas, and V. M. Casta, Nanotechnology 15, 98 (2004).

    Article  CAS  Google Scholar 

  8. J. Parvole, J.-P. Montfort, and L. Billon, Macromol. Chem. Phys. 205, 1369 (2004).

    Article  CAS  Google Scholar 

  9. C. J. Huang, S. Y. Fu, Y. H. Zhang, et al., Cryogenics 45, 450 (2005).

    Article  CAS  Google Scholar 

  10. A. N. Chesnokova, O. V. Lebedeva, Yu. N. Pozhidaev, et al., Adv. Mater. Res. 884/885, 251 (2014).

    Article  Google Scholar 

  11. Y. Pozhidaev, O. Lebedeva, S. Bochkareva, and E. Sipkina, Adv. Sci. Lett. 19, 309 (2013).

    Article  CAS  Google Scholar 

  12. O. V. Lebedeva, Yu. N. Pozhidaev, N. S. Shaglaeva, et al., Theor. Found. Chem. Eng. 44, 786 (2010).

    Article  CAS  Google Scholar 

  13. Yu. N. Pozhidaev, O. V. Lebedeva, S. S. Bochkareva, et al., Russ. J. Appl. Chem. 81, 1837 (2008).

    Article  CAS  Google Scholar 

  14. R. Katiyar, D. S. Bag, and I. Nigam, Adv. Mater. Lett. 5, 214 (2014).

    CAS  Google Scholar 

  15. T. V. Chirila, D. A. Morrison, Z. Gridneva, et al., Contact Lens Anterior Eye 28, 21 (2005).

    Article  Google Scholar 

  16. P. A. Faccia, F. M. Pardini, and J. I. Amalvy, Express Polym. Lett. 9, 554 (2015).

    Article  CAS  Google Scholar 

  17. S. Ljtomic', E. H. Suljovrujic', and J. M. Filipovic', Polym. Bull. 57, 691 (2006).

    Article  Google Scholar 

  18. B. J. McMahon, C. A. Pfluger, B. Sun, et al., J. Biomed. Mater. Res., Part A 102, 2375 (2014).

    Article  Google Scholar 

  19. S. Khoonsap, N. Supanchaiyamat, A. J. Hunt, et al., Chem. Eng. Sci. 122, 373 (2015).

    Article  CAS  Google Scholar 

  20. J. P. Kennedy, T. Kelen, and F. Tudos, J. Polym. Sci., Part A: Polym. Chem. 13, 2277 (1975).

    CAS  Google Scholar 

  21. O. V. Lebedeva, A. N. Chesnokova, T. V. Badlueva, et al., Pet. Chem. 55, 333 (2015).

    Article  CAS  Google Scholar 

  22. K. Nakanishi, Infrared Absorption Spectroscopy (Holden-Day, San Francisco, 1962).

    Google Scholar 

  23. N. Agmon, Chem. Phys. Lett. 244, 456 (1995).

    Article  CAS  Google Scholar 

  24. A. G. Mikheev, E. Yu. Safronova, G. Yu. Yurkov, and A. B. Yaroslavtsev, Mendeleev Commun. 23 (2), 66 (2013).

    Article  CAS  Google Scholar 

  25. A. B. Yaroslavtsev, Polym. Sci., Ser. A 55, 674 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Pozhidaev.

Additional information

Original Russian Text © O.V. Lebedeva, E.I. Sipkina, Yu.N. Pozhidaev, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 2, pp. 138–144.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, O.V., Sipkina, E.I. & Pozhidaev, Y.N. Hybrid membranes based on silica and 2-hydroxyethylmethacrylate–4-vinylpyridine copolymers. Pet. Chem. 56, 401–405 (2016). https://doi.org/10.1134/S0965544116050091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116050091

Keywords

Navigation