Skip to main content
Log in

The formation of polysulfone hollow fiber membranes by the free fall spinning method

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The basic principles of the spinning of polysulfone hollow fiber membranes by the dry-jet wet spinning process, where the polymer solution is extruded through an air gap between the spinneret and coagulation bath by the free fall spinning method, have been discussed. The main distinctive feature of the method is that the deformation of both the extruded polymer solution and the nascent hollow fiber (spinneret drawing) is due to the action of the gravity force alone without applying an external tensile force. Published data on the effect of the shear rate of the spinning solution at the spinneret outlet and nascent fiber drawing in the air gap on the structure and permeability of the hollow fiber membranes have been analyzed. The main factors affecting the spinneret drawing and dimensions of the hollow fiber membranes formed by free fall spinning have been experimentally revealed using polysulfones of different molecular weights. The factors are the dope composition, approaching ratio and viscosity, the air gap length, the temperature and the feed rate of the dope and the bore fluid, coagulation power of the bore fluid with respect to the dope. It has been found that as the spinneret draw value increases, the hydraulic permeability and the rejection coefficient of the resulting fiber generally change in a nonmonotonic manner: the pure water flux of the hollow fibers passes through a maximum and the rejection coefficient, through a maximum or minimum. The behavior is caused by the fact that the pore structure of the hollow fiber membranes is formed during uniaxial drawing and, in some cases (at increasing bore liquid flow rate), during biaxial deformation. When an external mechanical force is applied to the forming hollow fiber, an increase in the fraction of interconnected pores and the transition from cylindrical to slitlike pores are possible, which results in an increase in the hydraulic permeability of the fiber walls. A further increase in the spinneret draw ratio results in the reverse process, a decrease in the membrane matrix porosity due to the orientation and collapse of the pores, yielding a decrease in the flux and an increase in the rejection coefficient. By blocking the process of hollow fiber shrinkage through an increase in the bore fluid flow rate (increasing the internal diameter of the hollow fiber), it is possible to enhance the effective porosity of the fiber walls without substantial change in pore size, i.e., a transition from a system with isolated or partly isolated pores to a system of interconnected pores. A sharp increase in the hydraulic permeability of the hollow fiber membranes without a substantial change in their rejection is supposedly caused by this structural change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. I. Mahon, US Patent No. 3 228 876 (1966).

    Google Scholar 

  2. V. P. Dubyaga, L. P. Perepechkin, and L. P. Katalevskii, Polymer Membranes (Khimiya, Moscow, 1981) [in Russian].

    Google Scholar 

  3. M. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1996).

    Book  Google Scholar 

  4. R. E. Kesting, Synthetic Polymeric Membranes: A Structural Perspective (Wiley–Interscience, New York, 1985), 2nd Ed.

    Google Scholar 

  5. J.-J. Shieh and T. -S. Chung, J. Membr. Sci. 140, 67 (1998).

    Article  CAS  Google Scholar 

  6. S. Yu, Q. Cheng, C. Huang, et al., J. Membr. Sci. 434, 44 (2013).

    Article  CAS  Google Scholar 

  7. T. Shibutani, T. Kitaura, Y. Ohmukai, et al., J. Membr. Sci. 376, 102 (2011).

    Article  CAS  Google Scholar 

  8. S. P. Sun, K. Y. Wang, N. Peng, and T. A. Hatton, J. Membr. Sci. 363, 232 (2010).

    Article  CAS  Google Scholar 

  9. D. Wang, K. Li, and W. K. Teo, J. Membr. Sci. 208, 419 (2002).

    Article  CAS  Google Scholar 

  10. Q. Huang, B. Seibig, and D. Paul, J. Membr. Sci. 161, 287 (1999).

    Article  CAS  Google Scholar 

  11. J.-Y. Lai, M.-J. Liu, and K.-R. Lee, J. Membr. Sci. 86, 103 (1994).

    Article  CAS  Google Scholar 

  12. S. Kazama and M. Sakashita, J. Membr. Sci. 243, 59 (2004).

    Article  CAS  Google Scholar 

  13. H.-A. Tsai, L.-C. Ma, F. Yuan, et al., Desalination 234, 232 (2008).

    Article  CAS  Google Scholar 

  14. S. Yu, Y. Zheng, Q. Zhou, et al., Desalination 298, 49 (2012).

    Article  CAS  Google Scholar 

  15. Y.-B. Wang, M. Gong, S. Yang, et al., J. Membr. Sci. 452, 29 (2014).

    Article  CAS  Google Scholar 

  16. C. H. Loh and R. Wang, J. Membr. Sci. 466, 130 (2014).

    Article  CAS  Google Scholar 

  17. E. Fontananova, J. C. Jansen, A. Cristiano, et al., Desalination 192, 190 (2006).

    Article  CAS  Google Scholar 

  18. M. Khayef, K. C. Khulbe, and T. Matsuura, Desalination 148, 321 (2002).

    Article  Google Scholar 

  19. A. N. Cherkasov and V. A. Pasechnik, Membranes and Sorbents in Biotechnology (Khimiya, Leningrad, 1991) [in Russian].

    Google Scholar 

  20. R. W. Baker, Membrane Technology and Applications (Wiley, Chichester, 2004), 2nd Ed.

    Book  Google Scholar 

  21. L.-B. Zhao, M. Liu, Z.-L. Xu, et al., Chem. Eng. Sci. 137, 131 (2015).

    Article  CAS  Google Scholar 

  22. Q. F. Alsalhy, H. A. Salih, S. Simone, et al., Desalination 345, 21 (2014).

    Article  CAS  Google Scholar 

  23. M. Cheryan, Ultrafiltration and Microfiltration Handbook (Technomic, Lancaster, PA, 1998).

    Google Scholar 

  24. H. Strathmann, L. Giorno, and E. Drioli, An Introduction to Membrane Science and Technology (Consiglio Nazionale delle Ricerche, Rome, 2006).

    Google Scholar 

  25. A. J. Castro, US Patent No. 4 247 498 (1981).

    Google Scholar 

  26. N. Peng, N. Widjojo, P. Sukitpaneenit, et al., Prog. Polym. Sci. 37, 1401 (2012).

    Article  CAS  Google Scholar 

  27. F. W. Altena and C. A. Smolders, Macromolecules 15, 1491 (1982).

    Article  CAS  Google Scholar 

  28. S. G. Li, T. Boomgaard, C. A. Smolders, and H. Strathmann, Macromolecules 29, 2053 (1996).

    Article  CAS  Google Scholar 

  29. J. Ren and R. Wang, Handbook of Environmental Engineering, vol. 13: Membrane and Desalination Technologies, Ed. by L. K. Wang, J. P. Chen, Y.-T. Hung, and N. K. Shammas (Springer, New York, 2011), p. 47.

  30. E. S. Varslovan, M. A. Movchanskii, and A. V. Bil’-dyukevich, Mater., Tekhnol., Instrum., No. 3, 35 (2003).

    Google Scholar 

  31. A. V. Bil’dyukevich, Chemistry and Technology of New Substances and Materials, Ed. by A. V. Bil’dyukevich (Tekhnoprint, Minsk, 2005), p. 5 [in Russian].

  32. E. Klein and J. K. Smith, The Use of Solubility Parameters for Solvent Selection in Asymmetric Membrane Formation in Reverse Osmosis Membrane Research (Plenum, New York, 1972).

    Google Scholar 

  33. C. A. Smolders, A. J. Reuvers, R. M. Boom, and I. M. Wienk, J. Membr. Sci. 73, 259 (1992).

    Article  CAS  Google Scholar 

  34. R. M. Boom, I. M. Wienk, T. Boomgaard, and C. A. Smolders, J. Membr. Sci. 73, 277 (1992).

    Article  CAS  Google Scholar 

  35. I. M. Wienk, R. M. Boom, M. A. M. Beerlage, et al., J. Membr. Sci. 113, 361 (1996).

    Article  CAS  Google Scholar 

  36. P. van de Witte, P. J. Dijkstra, J. W. A. Berg, and J. Feijen, J. Membr. Sci. 117, 1 (1996).

    Article  Google Scholar 

  37. S. A. McKelvey, D. T. Clausi, and W. J. Koros, J. Membr. Sci. 124, 223 (1997).

    Article  CAS  Google Scholar 

  38. H. Fashandi, K. Zarrini, M. Youssefi, and M. M. Abolhasani, Ind. Eng. Chem. Res. 54, 7728 (2015).

    Article  CAS  Google Scholar 

  39. K. Y. Wang, T. Matsuura, T.-S. Chung, and W. F. Guo, J. Membr. Sci. 240, 67 (2004).

    Article  CAS  Google Scholar 

  40. J. Ren, Z. Li, F. S. Wong, and D. Li, J. Membr. Sci. 248, 177 (2005).

    Article  CAS  Google Scholar 

  41. T. S. Chung, W. H. Lin, and R. H. Vora, J. Membr. Sci. 167, 55 (2000).

    Article  CAS  Google Scholar 

  42. T. S. Chung, S. K. Teoh, W. W. Y. Lau, and M. P. Srinivasan, Ind. Eng. Chem. Res. 37, 3930 (1998).

    Article  CAS  Google Scholar 

  43. T. S. Chung, J. J. Qin, and J. Gu, Chem. Eng. Sci. 55, 1077 (2000).

    Article  CAS  Google Scholar 

  44. R. Wang and T.-S. Chung, J. Membr. Sci. 188, 29 (2001).

    Article  CAS  Google Scholar 

  45. J.-J. Qin, R. Wang, and T.-S. Chung, J. Membr. Sci. 175, 197 (2000).

    Article  CAS  Google Scholar 

  46. A. F. Ismail, B. C. Ng, and W. A. W. Abdul Rahman, Sep. Purif. Technol. 33, 255 (2003).

    Article  CAS  Google Scholar 

  47. A. F. Ismail, S. J. Shilton, I. R. Dunkin, and S. L. Gallivan, J. Membr. Sci. 126, 133 (1997).

    Article  CAS  Google Scholar 

  48. S. J. Shilton, A. F. Ismail, and P. J. Gough, Polymer 38, 2215 (1997).

    Article  CAS  Google Scholar 

  49. A. Idris, A. F. Ismail, S. A. Gordeyev, and S. J. Shilton, Polym. Test. 22, 31994 (2003).

    Article  Google Scholar 

  50. A. Zyabitskii, Theoretical Principles of Fiber Spinning (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  51. O. M. Ekiner and G. Vassilatos, J. Membr. Sci. 186, 71 (2001).

    Article  CAS  Google Scholar 

  52. K. Y. Wang, D. F. Li, T. S. Chung, and S. B. Chen, Chem. Eng. Sci. 59, 4657 (2004).

    Article  CAS  Google Scholar 

  53. S. J. Shilton, G. Bell, and J. Ferguson, Polymer 35, 5327 (1994).

    Article  CAS  Google Scholar 

  54. C. H. Loh and R. Wang, J. Membr. Sci. 466, 130 (2014).

    Article  CAS  Google Scholar 

  55. W. L. Chou and M. C. Yang, J. Membr. Sci. 250, 259 (2005).

    Article  CAS  Google Scholar 

  56. P. Sukitpaneenit and T.-S. Chung, J. Membr. Sci. 374, 67 (2011).

    Article  CAS  Google Scholar 

  57. L. Shi, R. Wang, and Y. Cao, J. Membr. Sci. 344, 112 (2009).

    Article  CAS  Google Scholar 

  58. A. V. Bil’dyukevich, S. A. Pratsenko, and T. V. Plisko, Khim. Tekhnol., No. 3, 174 (2012).

    Google Scholar 

  59. T. V. Plisko, A. V. Bil’dyukevich, V. V. Volkov, and N. N. Osipov, Pet. Chem. 55, 318 (2015).

    Article  CAS  Google Scholar 

  60. A. V. Bil’dyukevich, M. A. Movchanskii, and E. S. Varslovan, Ser. Krit. Tekhnol.: Membr., No. 3, 19 (2007).

    Google Scholar 

  61. S. Savariar, G. S. Underwood, E. M. Dickinson, et al., Desalination 144, 15 (2002).

    Article  CAS  Google Scholar 

  62. www.plasticsportal.net/wa/EU/Catalog/ePlastics/doc4/BASF/PRD/30062373/.pdf?urn=urn:documentum: eCommerce_sol_EU:09007bb28013df45.pdf.

  63. A. V. Bil’dyukevich and L. A. Fen’ko, Dokl. Nats. Akad. Nauk Belarusi, No. 2, 14 (2005).

    Google Scholar 

  64. L. A. Bil. Fen’ko, Polym. Sci., Ser. A 55, 75 (2013).

    Article  Google Scholar 

  65. V. V. Usoskii, A. V. Bil’dyukevich, E. S. Varslovan, and T. V. Plisko, Izv. Nats. Akad. Nauk Belarusi, Ser. Khim., No. 4, 34 (2009).

    Google Scholar 

  66. A. V. Bildyukevich, in Proceedings of IWA Conference on Membrane Technologies in Water and Waste Water Treatment (Moscow, 2008), p. 350.

    Google Scholar 

  67. L. A. Fen’ko, N. G. Semenkevich, and A. V. Bil’-dyukevich, Pet. Chem. 51, 527 (2011).

    Article  Google Scholar 

  68. A. V. Bil’dyukevich, M. A. Movchanskii, and E. S. Varslovan, Izv. Nats. Akad. Nauk Belarusi, Ser. Khim., No. 1, 109 (2008).

    Google Scholar 

  69. V. M. Stankevich, Izv. Nats. Akad. Nauk Resp. Kazakh., Ser. Fiz.-Mat. 3, 139 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bildyukevich.

Additional information

Original Russian Text © A.V. Bildyukevich, T.V. Plisko, V.V. Usosky, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 2, pp. 113–137.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bildyukevich, A.V., Plisko, T.V. & Usosky, V.V. The formation of polysulfone hollow fiber membranes by the free fall spinning method. Pet. Chem. 56, 379–400 (2016). https://doi.org/10.1134/S0965544116050042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116050042

Keywords

Navigation