Petroleum Chemistry

, Volume 56, Issue 4, pp 294–302 | Cite as

Structure and properties of poly(4-methylpentene-1) track-etched membranes

  • D. A. SyrtsovaEmail author
  • V. V. Teplyakov
  • Yu. K. Kochnev
  • A. N. Nechaev
  • P. Yu. Apel
  • O. R. Adeniyi
  • L. Petrik


The influence of irradiation and the subsequent etching of latent tracks in poly(4-methylpentene-1) (PMP) films on the transport parameters of the resulting membranes has been studied. The films have been irradiated with accelerated Kr and Xe ions of 4.5 and 1.2 MeV/nucleon in energy at a fluence of 106–109 cm−2. It has been found that the irradiation followed by etching makes it possible to obtain an anisotropic membrane with a nonporous selective layer between two porous layers with tapered pores. The CH4, CO2, and He transport characteristics of the membranes have been examined. It has been shown that these modification methods can significantly increase the gas flux through the membrane. It is believed that the ion track etching procedure as applied to PMP can form the basis for fabricating membranes with a highly permeable, nonporous, gas-selective layer.


membranes track-etched membrane gas permeability poly-4-methylpentene-1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. B. Price and R. M. Walker, US Patent No. 3 303 085 (1962).Google Scholar
  2. 2.
    P. Price and R. M. Walker, J. Appl. Phys. 33, 3407 (1962).CrossRefGoogle Scholar
  3. 3.
    Nuclepore Filtration Products for the Laboratory: Catalog Lab. 50 (Nuclepore, Pleasanton, 1980), p. 1.Google Scholar
  4. 4.
    G. N. Flerov and B. C. Barashenkov, Usp. Fiz. Nauk 114, 351 (1974).CrossRefGoogle Scholar
  5. 5.
    T. S. Zvarova, B. A. Gvozdev, and I. Zvara, Deposited paper, Available from JINR, 1974, Dubna, no. B1-14- 8291 [in Russian].Google Scholar
  6. 6.
    G. N. Akap’ev, B. C. Barashenkov, L. I. Samoilova, et al., Deposited paper, Available from JINR, 1974, Dubna, no. B1-14-8214 [in Russian].Google Scholar
  7. 7.
    V. V. Berezkin, A. N. Nechaev, S. V. Fomichev, et al., Kolloid. Zh. 53, 339 (1991).Google Scholar
  8. 8.
    P. Yu. Apel, Encyclopedia of Membrane Science and Technology, Ed. by E. M. V. Hoek and V. V. Tarabara (Wiley, Hoboken, NJ, 2013), p. 1.Google Scholar
  9. 9.
    A. I. Vilenskii and A. L. Tolstikhina, Izv. Akad. Nauk, Ser. Khim., No. 6, 1111 (1999).Google Scholar
  10. 10.
    J. F. Rabek, Experimental Methods in Polymer Chemistry, (Wiley, Chichester, 1980).Google Scholar
  11. 11.
    L. I. Kravets, S. N. Dmitriev, V. V. Sleptsov, et al., High Energy Chem. 34, 116 (2000).CrossRefGoogle Scholar
  12. 12.
    S. N. Akimenko, T. I. Mamonova, O. L. Orelovich, et al., Krit. Tekhnol.: Membr., No. 15, 21 (2002).Google Scholar
  13. 13.
    P. Yu. Apel’ and S. N. Dmitriev, Membranes and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013), p. 126 [in Russian].Google Scholar
  14. 14.
    T. W. Cornelius, P. Yu. Apel, B. Schiedt, et al., Nucl. Instrum. Methods Phys. Res. B 265, 553 (2007).CrossRefGoogle Scholar
  15. 15.
    S. N. Dmitriev, L. I. Kravets, V. V. Sleptsov, et al., High Energy Chem. 31, 255 (1997).Google Scholar
  16. 16.
    P. Yu. Apel, I. V. Blonskaya, S. N. Dmitriev, et al., Radiat. Meas. 43, 552 (2008).CrossRefGoogle Scholar
  17. 17.
    P. Yu. Apel and D. Fink, Transport Processes in Ion- Irradiated Polymers, Ed. by D. Fink (Springer, Berlin, 2004).Google Scholar
  18. 18.
    G. A. Tishchenko, L. M. Kalyuzhnaya, Yu. M. Boyarchuk, et al., Vysokomol. Soedin., Ser. A 33, 2144 (1991).Google Scholar
  19. 19.
    L. K. Shataeva, I. Yu. Ryadnova, A. N. Nechaev, et al., Colloid J. 62, 113 (2000).Google Scholar
  20. 20.
    A. N. Nechaev, V. V. Berezkin, A. I. Vilenskii, et al., Krit. Tekhnol.: Membr., No. 6, 17 (2000).Google Scholar
  21. 21.
    N. I. Shtan’ko, V. Ya. Kabanov, P. Yu. Apel’, et al., Izv. Akad. Nauk, Ser. Khim., No. 5, 858 (2000).Google Scholar
  22. 22.
    V. V. Ovchinnikov, V. D. Seleznev, and V. I. Kuznetsov, Preprint of Joint Inst. for Nucl. Res., Dubna, 1987.Google Scholar
  23. 23.
    K. Awasthi, M. Stamm, V. Abetz, and Y. K. Vijay, J. Hydrogen Energy 36, 9374 (2011).CrossRefGoogle Scholar
  24. 24.
    S. G. Durgar’yan, Yu. P. Yampol’skii, and N. A. Plate, Usp. Khim. 57, 974 (1988).Google Scholar
  25. 25.
    M. Escoubes, J. Y. Dolveck, J. Davenas, et al., Nucl. Instrum. Methods Phys. Res. B 105, 130 (1995).CrossRefGoogle Scholar
  26. 26.
    A. Sannomiya, S. Nagaoka, Y. Suzuki, et al., Polymer 47, 6585 (2006).CrossRefGoogle Scholar
  27. 27.
    A. C. Puleo, D. R. Paul, and P. K. Wong, Polymer 30, 1357 (1989).CrossRefGoogle Scholar
  28. 28.
    L. C. Lopez, G. L. Wilkes, P. M. Stricklen, and S. A. White, J. Macromol. Sci. C 32, 301 (1992).CrossRefGoogle Scholar
  29. 29.
    A. S. Michaels, R. V. Wolf, and J. A. Barrie, J. Appl. Phys. 34, 13 (1963).CrossRefGoogle Scholar
  30. 30.
    A. S. Michaels and H. J. Bixler, J. Polym. Sci. 50, 413 (1961).CrossRefGoogle Scholar
  31. 31.
    A. V. Meyers, V. Stannett, and M. Szwarc, J. Polym. Sci. 35, 285 (1959).CrossRefGoogle Scholar
  32. 32.
    C. L. Aitken, W. J. Koros, and D. R. Paul, Macromolecules 25, 3424 (1992).CrossRefGoogle Scholar
  33. 33.
    Yu. I. Dytnerskii, V. P. Brykov, and G. G. Kagramanov, Membrane Separation of Gases (Khimiya, Moscow, 1991) [in Russian].Google Scholar
  34. 34.
    V. V. Teplyakov, Doctoral Dissertation in Chemistry (Moscow, 1992).Google Scholar
  35. 35.
    S. A. Stern, V. M. Shab, and B. J. Hardy, J. Polymer Sci., Part B: Polym. Phys. 25, 1263 (1987).CrossRefGoogle Scholar
  36. 36.
    P. Yu. Apel’, V. V. Shirkova, T. I. Soboleva, et al., Vysokochist. Veshchestva, No. 2, 105 (1990).Google Scholar
  37. 37.
    P. Yu. Apel’, V. V. Berezkin, A. B. Vasil’ev, et al., Kolloidn. Zh. 54 (4), 220 (1992).Google Scholar
  38. 38.
    P. Yu. Apel, A. Yu. Didyk, and A. G. Salina, Nucl. Instrum. Methods Phys. Res. B 107, 276 (1996).CrossRefGoogle Scholar
  39. 39.
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).CrossRefGoogle Scholar
  40. 40.
    P. Yu. Apel’, SU Patent No. 1 739 770 (2000).Google Scholar
  41. 41.
    A. I. Vilensky, D. L. Zagorski, P. Yu. Apel, et al., Nucl. Instrum. Methods Phys. Res. B 218, 294 (2004).CrossRefGoogle Scholar
  42. 42.
    P. Zoller, H. W., Jr. Starkweather, and G. A. Jones, J. Polym. Sci., Part B: Polym. Phys. 24, 1451 (1986).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. A. Syrtsova
    • 1
    Email author
  • V. V. Teplyakov
    • 1
  • Yu. K. Kochnev
    • 2
  • A. N. Nechaev
    • 2
  • P. Yu. Apel
    • 2
  • O. R. Adeniyi
    • 3
  • L. Petrik
    • 3
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Flerov Laboratory of Nuclear ReactionsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.University of the Western CapeCape TownSouth Africa

Personalised recommendations