Advertisement

Petroleum Chemistry

, Volume 56, Issue 4, pp 321–329 | Cite as

Influence of the concentration and molecular weight of polyethylene glycol on the structure and permeability of polysulfone hollow fiber membranes

  • T. V. PliskoEmail author
  • A. V. Bildyukevich
  • V. V. Usosky
  • V. V. Volkov
Article

Abstract

The influence of the concentration and molecular weight of polyethylene glycol (PEG, 400–40000 g mol–1) on the phase state and viscosity of ternary polysulfone–polyethylene glycol–N,N-dimethylacetamide solutions has been studied. It was shown that an increase in PEG molecular weight (MW) results in a decrease in the region of existence of homogeneous solutions on the phase diagram due to polymer incompatibility, and in an increase in the viscosity of polymer solutions. At a constant PEG concentration (5%) the viscosity depends on PEG MW in a complicated way: in the range of PEG molecular weights 1000–6000 g mol–1 the viscosity is nearly unchanged, but when the PEG MW exceeds 6000 g mol–1 a sharp increase in the viscosity of the polymer solutions is observed. It was shown that changes in the membrane performance are determined by PEG concentration in the dope solution. At a PEG concentration of 5% an increase in PEG MW results in an increase in membrane performance and a decrease in the rejection capability; at an increase in PEG concentration in the dope solution up to 25% the maximum pure water flux was observed for PEG-400. The bubble point test showed that with an increase in PEG molecular weight a fraction of large pores, which can be considered as selective layer defects, increases.

Keywords

polysulfone polyethylene glycol hollow fiber membrane permeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Klein and J. K. Smith, The Use of Solubility Parameters for Solvent Selection in Asymmetric Membrane Formation in Reverse Osmosis Membrane Research (Plenum, New York, 1972).Google Scholar
  2. 2.
    V. Laninovic, Desalination 186, 39 (2005).CrossRefGoogle Scholar
  3. 3.
    S. S. Madaeni, A. Rahimpour, and J. Barzin, Iran. Polym. J. 14, 421 (2005).Google Scholar
  4. 4.
    C. Barth, J. Membr. Sci. 169, 287 (2000).CrossRefGoogle Scholar
  5. 5.
    J. J. Qin, J. Membr. Sci. 211, 139 (2003).CrossRefGoogle Scholar
  6. 6.
    D. Wang, K. Li, and W. K. Teo, J. Membr. Sci. 178, 13 (2000).CrossRefGoogle Scholar
  7. 7.
    A. Idris and L. K. Yet, J. Membr. Sci. 280, 920 (2006).CrossRefGoogle Scholar
  8. 8.
    B. J. Cha, K. Char, S. S. Kim, and C. K. Kim, J. Membr. Sci. 108, 219 (1995).CrossRefGoogle Scholar
  9. 9.
    H. Ohya, S. Shiki, and H. Kawakami, J. Membr. Sci. 326, 293 (2009).CrossRefGoogle Scholar
  10. 10.
    Q. Y. Wu, B. T. Liu, M. Li, et al., J. Membr. Sci. 437, 227 (2013).CrossRefGoogle Scholar
  11. 11.
    A. Idris, N. M. Zain, and M. Y. Noordin, Desalination 207, 324 (2007).CrossRefGoogle Scholar
  12. 12.
    M. Z. Yunos, Z. Harun, H. Basri, and A. F. Ismail, Desalination 333, 36 (2014).CrossRefGoogle Scholar
  13. 13.
    B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Membr. Sci. 309, 209 (2008).CrossRefGoogle Scholar
  14. 14.
    B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Colloid Interface Sci. 320, 245 (2008).CrossRefGoogle Scholar
  15. 15.
    S. Wongchitphimon, R. Wang, R. Jiraratananon, et al., J. Membr. Sci. 369, 329 (2011).CrossRefGoogle Scholar
  16. 16.
    B. Torrestiana-Sanchez, R. I. Ortiz-Basurto, and E. Brito-De La Fuente, J. Membr. Sci. 152, 19 (1999).CrossRefGoogle Scholar
  17. 17.
    I. C. Kim and K. H. Lee, J. Membr. Sci. 230, 183 (2004).CrossRefGoogle Scholar
  18. 18.
    Y. Liu, G. H. Koops, and H. Strathmann, J. Membr. Sci. 223, 187 (2003).CrossRefGoogle Scholar
  19. 19.
    S. Deniz, Desalination 200, 42 (2006).CrossRefGoogle Scholar
  20. 20.
    M. H. D. A. Farahani, H. Rabiee, V. Vatanpour, and S. M. Borghei, Desalin. Water Treat. (2015). doi: 10.1080/19443994.2015.104873910.1080/19443994.20 15.1048739Google Scholar
  21. 21.
    Q. Z. Zheng, P. Wang, and Y. N. Yang, J. Membr. Sci. 279, 230 (2006).CrossRefGoogle Scholar
  22. 22.
    B. Jung, J. K. Yoon, B. Kim, and H. W. Rhee, J. Membr. Sci. 243, 45 (2004).CrossRefGoogle Scholar
  23. 23.
    N. A. Ochoa, P. Pradános, L. Palacio, et al., J. Membr. Sci. 187, 227 (2001).CrossRefGoogle Scholar
  24. 24.
    H. Basri, A. F. Ismail, and M. Aziz, Desalination 273, 72 (2011).CrossRefGoogle Scholar
  25. 25.
    B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Membr. Sci. 315, 36 (2008).CrossRefGoogle Scholar
  26. 26.
    A. Urkiaga, D. Iturbe, and J. Etxebarria, Desalin. Water Treat. (2014). doi 10.1080/19443994.2014.1000976Google Scholar
  27. 27.
    R. Bhattacharya, T. N. Phaniraj, and D. Shailaja, J. Membr. Sci. 227, 23 (2003).CrossRefGoogle Scholar
  28. 28.
    M. J. Han and S. T. Nam, J. Membr. Sci. 202, 55 (2002).CrossRefGoogle Scholar
  29. 29.
    N. Arahman, B. Arifin, S. Mulyati, et al., Mater. Sci. Appl. 3, 72 (2012).Google Scholar
  30. 30.
    Y. Q. Wang, Y. L. Su, X. L. Ma, et al., J. Membr. Sci. 283, 440 (2006).CrossRefGoogle Scholar
  31. 31.
    M. Liu, Y. M. Wei, Z. L. Xu, et al., J. Membr. Sci. 437, 169 (2013).CrossRefGoogle Scholar
  32. 32.
    R. M. Boom, I. M. Wlenk, T. van den Boomgaard, and C. A. Smolders, J. Membr. Sci. 73, 277 (1992).CrossRefGoogle Scholar
  33. 33.
    P. Witte, P. J. Dijkstra, J. W. A. Berg, and J. Feijen, J. Membr. Sci. 117, 1 (1996).CrossRefGoogle Scholar
  34. 34.
    I. M. Wienk, R. M. Boom, M. A. M. Beerlage, et al., J. Membr. Sci. 113, 361 (1996).CrossRefGoogle Scholar
  35. 35.
    I. Cabasso, E. Klein, and J. K. Smith, J. Appl. Polym. Sci. 20, 2377 (1976).CrossRefGoogle Scholar
  36. 36.
    I. Cabasso, E. Klein, and J. K. Smith, J. Appl. Polym. Sci. 21, 165 (1977).CrossRefGoogle Scholar
  37. 37.
    H. D. W. Roesink, Microfiltration, Membrane Development and Module Design, PhD Thesis (University of Twente, the Netherlands, 1989).Google Scholar
  38. 38.
    J. J. Qin, R. Wang, and T. S. Chung, J. Membr. Sci. 175, 197 (2000).CrossRefGoogle Scholar
  39. 39.
    L. A. Fen’ko and A. V. Bil’dyukevich, Polym. Sci., Ser. A 55, 75 (2013).CrossRefGoogle Scholar
  40. 40.
    S. P. Papkov, Physicochemical Principles of Processing of Polymer Solutions (Khimiya, Moscow, 1971) [in Russian].Google Scholar
  41. 41.
    A. O. Malakhov and V. V. Volkov, Polym. Sci., Ser. A 47, 1295 (2005).Google Scholar
  42. 42.
    A. O. Malakhov and V. V. Volkov, Polym. Sci., Ser. A 49, 745 (2007).CrossRefGoogle Scholar
  43. 43.
    T. V. Plisko, A. V. Bil’dyukevich, V. V. Volkov, and N. N. Osipov, Pet. Chem. 55, 318 (2015).CrossRefGoogle Scholar
  44. 44.
    V. E. Dreval’, Reology: Polymers and Oil, Ed. by G. V. Vinogradov (Novosibirsk, 1977), p. 402 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. V. Plisko
    • 1
    Email author
  • A. V. Bildyukevich
    • 1
  • V. V. Usosky
    • 1
  • V. V. Volkov
    • 2
  1. 1.Institute of Physical Organic ChemistryNational Academy of Sciences of BelarusMinskRepublic of Belarus
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations