Advertisement

Petroleum Chemistry

, Volume 56, Issue 4, pp 330–334 | Cite as

Effect of thermal annealing on the structural and conducting properties of zinc nanotubes synthesized in the matrix of track-etched membranes

  • A. L. Kozlovskiy
  • D. I. Shlimas
  • A. A. MashentsevaEmail author
  • M. V. Zdorovets
  • K. K. Kadyrzhanov
Article

Abstract

Results of studies of the effect of thermal annealing on the structural and conducting properties of ordered arrays of zinc nanotubes prepared by electrochemical deposition in track-etched membranes based on polyethylene terephthalate (PET) have been described. The dimensions, chemical composition, and crystal structure of the synthesized samples have been integrally analyzed using scanning electron microscopy, X-ray diffraction, and energy dispersive analysis. It has been shown that the thermal annealing of zinc-based nanotubes makes it possible to control the formation of an oxide phase in the nanostructures. The presence of the ZnO oxide phase in an amount of no more than 10 wt % leads to a decrease in the resistivity and an increase in the conductivity. In addition, by changing the crystal structure of Zn nanotubes by thermal annealing, it is possible to prepare ordered arrays of n-type semiconductors with considerable prospects of widespread use in nanoelectronics and nanooptics.

Keywords

track-etched membranes template synthesis zinc nanotubes heat treatment conductivity of nanotubes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Asomoza, H. Malodonado, M. D. Olvera, et al., J. Mater. Sci. Mater. Electron. 11, 383 (2000).Google Scholar
  2. 2.
    Q. J. Li, Appl. Polym. Sci. 103, 41 (2006).Google Scholar
  3. 3.
    J. Wienke and A. S. Booji, Thin Solid Films 516, 4508 (2008).CrossRefGoogle Scholar
  4. 4.
    R. Al-Asmara, G. Ferblantier, F. Mailly, et al., Thin Solid Films. 473, 49 (2005).CrossRefGoogle Scholar
  5. 5.
    J. O. Williams and L. M. Turton, Trans. Faraday Soc. 64, 2496 (1968).CrossRefGoogle Scholar
  6. 6.
    J. M. Thomas, Trans. Faraday Soc. 63, 4 (1967).Google Scholar
  7. 7.
    Theory of Defects in Semiconductors, Ed. by D. A. Drabold and S. Estreicher (Springer, Berlin, 2007).Google Scholar
  8. 8.
    M. B. Muradov, in Proceedings of the 2nd International Conference on Lasers and Their Application (Tehran, 1993), p. 179.Google Scholar
  9. 9.
    V. P. Tolstoi, Russ. Chem. Rev. 62, 237 (1993).CrossRefGoogle Scholar
  10. 10.
    A. Kaur and R. P. Chauhan, Radiat. Phys. Chem. 100, 59 (2014).CrossRefGoogle Scholar
  11. 11.
    R. P. Chauhan, D. Gehlawat, and A. Kaur, J. Exp. Nanosci. 9, 871 (2014).CrossRefGoogle Scholar
  12. 12.
    J. F. Haltiwanger, J. H. Davidson, and E. J. Wilson, J. Solar Energy Eng. 132, 0410111 (2010).CrossRefGoogle Scholar
  13. 13.
    S. Kumar, A. Vohra, and S. K. Chakarvarti, Nanomater. Nanotechnol. 2, 1 (2012).CrossRefGoogle Scholar
  14. 14.
    A. Kaur and R. P. Chauhan, J. Mater. Sci.: Mater. Electron. 24, 4302 (2013).Google Scholar
  15. 15.
    S. Kumar, A. Vohra, and S. K. J. Chakarvarti, Mater. Sci.: Mater. Electron. 24, 711 (2013).Google Scholar
  16. 16.
    R. S. Madatov, T. B. Tadiev, I. A. Gabulov, et al., Semicond. Phys. Quant. Electron. Optoelectron. 6, 278 (2003).Google Scholar
  17. 17.
    K. R. Murali, Mater. Lett. 59, 15 (2005).CrossRefGoogle Scholar
  18. 18.
    S. A. Studenikin, N. Golege, and M. Cocivera, J. Appl. Phys. 83, 2104 (1998).CrossRefGoogle Scholar
  19. 19.
    L. Huan, L. C. Hui, L. Bixia, et al., Chin. Phys. Lett. 22, 185 (2005).CrossRefGoogle Scholar
  20. 20.
    S. Venkatachalam, D. Mangalaraj, S. K. Narayandass, et al., Vacuum 81, 928 (2007).CrossRefGoogle Scholar
  21. 21.
    V. I. Klimov, P. B. Haring, H. Kurz, and V. A. Karavanskii, Appl. Phys. Lett. 67, 653 (1995).CrossRefGoogle Scholar
  22. 22.
    V. I. Klimov and V. A. Karavanskii, Phys. Rev. B 54, 8087 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. L. Kozlovskiy
    • 1
    • 2
  • D. I. Shlimas
    • 1
    • 2
  • A. A. Mashentseva
    • 1
    • 2
    Email author
  • M. V. Zdorovets
    • 1
    • 3
  • K. K. Kadyrzhanov
    • 2
  1. 1.Institute of Nuclear Physics of the Republic of KazakhstanAlmatyKazakhstan
  2. 2.Gumilyov Eurasian National UniversityAstanaKazakhstan
  3. 3.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations