Advertisement

Petroleum Chemistry

, Volume 56, Issue 4, pp 354–359 | Cite as

A hydrodynamic study of flow structure in spiral reverse osmosis devices

  • O. A. AbonosimovEmail author
  • S. I. Lazarev
  • D. O. Abonosimov
Article

Abstract

The hydrodynamics of flow structure in an industrial spiral reverse-osmosis device has been studied using as an example commercially available membrane elements ERO-E-6.5/900A and ERO-K-92-475 at operating pressures of 1.0 to 4.0 MPa. Experimental data on response curves and the axial mixing coefficient depending on the flow rate of the solution and pressure in the separation module have been obtained, thus making it possible to derive a criterion equation for calculating axial mixing coefficients. Numerical values for empirical factors are reported by which axial mixing coefficients can be calculated and their values be predicted for similar membrane units operating at a high hydrostatic pressure.

Keywords

reverse osmosis unit hydrodynamics response curves flow structure criterion equation empirical coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Ochkina, N. N. Kulov, and S. V. Fomichev, Theor. Found. Chem. Eng. 32, 44 (1998).Google Scholar
  2. 2.
    E. M. Kuvardina, Candidate’s Dissertation in Chemistry (Kursk, 2003).Google Scholar
  3. 3.
    V. I. Gorbanyuk and V. M. Starov, Khim. Tekhnol, Vody 5, 8 (1983).Google Scholar
  4. 4.
    V. A. Kirsh, I. L. Borisov, and V. V. Volkov, Pet. Chem. 53, 578 (2013).CrossRefGoogle Scholar
  5. 5.
    V. A. Kirsh, V. I. Roldugin, S. D. Bazhenov, and A. V. Bildukevich, Pet. Chem. 55, 339 (2015).CrossRefGoogle Scholar
  6. 6.
    S. V. Kovalev, Khim. Tekhnol. Vody 36, 1 (2014).Google Scholar
  7. 7.
    S. Al-Jeshi, Desalination 228, 287 (2008).CrossRefGoogle Scholar
  8. 8.
    R. U. Kumar, M. Muthukrishnan, and B. K. Guha, Desalination 230, 70 (2008).CrossRefGoogle Scholar
  9. 9.
    P. Lipp and G. Baldauf, Energ. Wasser-Prax., No. 4, 60 (2008).Google Scholar
  10. 10.
    M. Khayet and T. Matsuura, Membrane Distillation: Principles and Applications (Elsevier, Amsterdam, 2011).Google Scholar
  11. 11.
    C. Cheng, S. Li, W. Zhao, et al., J. Membr, Sci. 417/418, 228, (2012).CrossRefGoogle Scholar
  12. 12.
    A. N. Filippov, S. I. Vasin, and V. M. Starov, Colloids Surf. A 282/283, 272 (2006).CrossRefGoogle Scholar
  13. 13.
    O. A. Abonosimov, S. I. Lazarev, and A. S. Gorbachev, Russ. J. Appl. Chem. 77, 1826 (2004).CrossRefGoogle Scholar
  14. 14.
    K. S. Lazarev, S. V. Kovalev, and A. A. Arzamastsev, Vestn. Tambovsk. Gos. Tekh. Univ. 17, 726 (2011).Google Scholar
  15. 15.
    V. I. Kochetov, S. I. Lazarev, and V. Yu. Bogomolov, Khim. Neftegaz. Mashinostr., No. 11, 7 (2014).Google Scholar
  16. 16.
    N. I. Gel'perin, V. L. Pebalk, and A. E. Kostanyan, Flow Structure and Efficiency of Tower Units in Chemical Industry (Khimiya, Moscow, 1977) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. A. Abonosimov
    • 1
    Email author
  • S. I. Lazarev
    • 1
  • D. O. Abonosimov
    • 1
  1. 1.Tambov State Technical UniversityTambovRussia

Personalised recommendations