Skip to main content
Log in

Theoretical aspects of methanol carbonylation on copper-containing zeolites

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The experimental data have been considered to match the theoretical mechanisms proposed previously to describe processes of oxidative carbonylation of methanol on copper-containing catalysts. The schemes examined cover methoxy intermediates, carbomethoxy intermediates, carbonates, and Cu(OCH3)2Cu binuclear clusters. The attack of the first methanol molecule on copper carbonate has been simulated in terms of the isolated cluster (8R) model with periodic boundary conditions (on CuMOR zeolite), and parameters of the individual steps involving description of the transition states have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Saegusa, T. Tsuda, K. Isayama, and K. Nishijima, Tetrahedron Lett. 9, 831 (1968).

    Article  Google Scholar 

  2. T. Saegusa, T. Tsuda, and K. Isayama, Org. Chem. 35, 2976 (1970).

    Article  CAS  Google Scholar 

  3. P. Koch, G. Cipriani, and E. Perrotti, Gazz. Chim. Ital. 104, 599 (1974).

    CAS  Google Scholar 

  4. U. Romano, R. Tesel, M. M. Mauri, and P. Rebora, Ind. Eng. Chem. Res. 19, 396 (1980).

    Article  CAS  Google Scholar 

  5. W. Mo, H. Xiong, J. Hu, Y. Ni, G. Li, Appl. Organomet. Chem. 24, 576 (2010).

    Article  CAS  Google Scholar 

  6. V. Raab, M. Merz, and J. Sundermeyer, J. Mol. Catal. A: Chem. 175, 51 (2001).

    Article  CAS  Google Scholar 

  7. S. A. Anderson and T. W. Root, J. Catal. 217, 396 (2003).

    Article  CAS  Google Scholar 

  8. S. A. Anderson and T. W. Root, J. Mol. Catal. A: Chem. 220, 247 (2004).

    Article  CAS  Google Scholar 

  9. S. T. King, J. Catal. 161, 530 (1996).

    Article  CAS  Google Scholar 

  10. Y. Zhang and A. T. Bell, J. Catal. 255, 153 (2008).

    Article  CAS  Google Scholar 

  11. J. Engeldinger, C. Domke, M. Richter, and U. Bentrup, Appl. Catal., A 382, 303 (2010).

    Article  CAS  Google Scholar 

  12. G. Rebmann, V. Keller, M. J. Ledoux, and N. Keller, Green Chem. 10, 207 (2008).

    Article  CAS  Google Scholar 

  13. Y. Zhang, D. Briggs, E. de Smitt, and A. T. Bell, J. Catal. 251, 443 (2007).

    Article  CAS  Google Scholar 

  14. N. Keller, G. Rebmann, and V. Keller, J. Mol. Catal. A: Chem. 317, 1 (2010).

    Article  CAS  Google Scholar 

  15. T. Sakakura, J. -C. Choi, and H. Yasuda, Chem. Rev. 107, 2365 (2007).

    Article  CAS  Google Scholar 

  16. E. Leino, P. Maki-Arvela, V. Eta, et al., Appl. Catal., A 383, 1 (2010).

    Article  CAS  Google Scholar 

  17. N. Kitajima and Y. Moro-oka, Chem. Rev. 94, 737 (1994).

    Article  CAS  Google Scholar 

  18. W. B. Tolman, Acc. Chem. Res. 30, 227 (1997).

    Article  CAS  Google Scholar 

  19. I. J. Drake, Y. Zhang, D. Briggs, et al., J. Phys. Chem. B 110, 11654 (2006).

    Article  CAS  Google Scholar 

  20. Y. Zhang, I. Drake, D. Briggs, and A. T. Bell, J. Catal. 244, 219 (2006).

    Article  CAS  Google Scholar 

  21. X. Zheng and A. T. Bell, J. Phys. Chem. C 112, 5043 (2008).

    Article  CAS  Google Scholar 

  22. J. Engeldinger, M. Richter, and U. Bentrup, Phys. Chem. Chem. Phys. 14, 2183 (2012).

    Article  CAS  Google Scholar 

  23. M. H. Groothaert, P. J. Smeets, B. F. Sels, et al., J. Am. Chem. Soc. 127, 1394 (2005).

    Article  CAS  Google Scholar 

  24. J. S. Woertink, P. J. Smeets, M. H. Groothaert, et al., Proc. Natl. Acad. Sci. USA 106, 18908 (2009).

    Article  CAS  Google Scholar 

  25. A. A. Rybakov, A. V. Larin, and G. M. Zhidomirov, Comput. Theor. Chem. (submitted), No. COMPTCD-15-01017.

  26. A. V. Larin, A. A. Rybakov, G. M. Zhidomirov, et al., J. Catal. 281, 212 (2011).

    Article  CAS  Google Scholar 

  27. G. M. Zhidomirov, A. V. Larin, D. N. Trubnikov, and D. P. Vercauteren, J. Phys. Chem. C 113, 8258 (2009).

    Article  CAS  Google Scholar 

  28. A. V. Larin, G. M. Zhidomirov, D. N. Trubnikov, and D. P. Vercauteren, J. Comput. Chem. 31, 421 (2010).

    CAS  Google Scholar 

  29. A. A. Rybakov, A. V. Larin, G. M. Zhidomirov, et al., Comput. Theor. Chem. 964, 108 (2011).

    Article  CAS  Google Scholar 

  30. G. M. Zhidomirov, A. A. Shubin, A. V. Larin, et al., Practical Aspects of Computational Chemistry: I. An Overview of the Last Two Decades and Current Trends, Ed. by J. Leszczynski and M. K. Shukla (Springer, Dordrecht, 2012), p. 579.

  31. Y. Shen, Q. Meng, S. Huang, et al., RSC Adv. 2, 7109 (2012).

    Article  CAS  Google Scholar 

  32. R. Zhang, J. Li, and B. Wang, RSC Adv. 3, 12287 (2013).

    Article  CAS  Google Scholar 

  33. H. Zheng, J. Qi, R. Zhang, et al., Fuel Process. Technol. 128, 310 (2014).

    Article  CAS  Google Scholar 

  34. A. A. Rybakov, I. A. Bryukhanov, A. V. Larin, and G. M. Zhidomirov, Int. J. Quantum Chem. 115, 1709 (2015).

    Article  CAS  Google Scholar 

  35. I. J. Drake, Y. Zhang, M. K. Gilles, et al., J. Phys. Chem. B 110, 11665 (2006).

    Article  CAS  Google Scholar 

  36. A. V. Larin, A. A. Rybakov, and G. M. Zhidomirov, J. Phys. Chem. C 116, 2399 (2012).

    Article  CAS  Google Scholar 

  37. A. A. Rybakov, A. V. Larin, and G. M. Zhidomirov, Inorg. Chem. 51, 12165 (2012).

    Article  CAS  Google Scholar 

  38. J. W. Ward and H. W. Habgood, J. Phys. Chem. 70, 1178 (1966).

    Article  CAS  Google Scholar 

  39. E. Garrone, B. Bonelli, C. Lamberti, et al., J. Chem. Phys. 117 (22), 10274 (2002).

    Article  CAS  Google Scholar 

  40. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.02, (Gaussian, Wallingford, CT, 2009).

    Google Scholar 

  41. G. Kresse and J. Hafner, Phys. Rev.B 47, 558 (1993).

    Article  CAS  Google Scholar 

  42. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  43. G. Henkelman, B. P. Uberuaga, and H. Jønsson, J. Chem. Phys. 113, 9901 (2000).

    Article  CAS  Google Scholar 

  44. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., Otkrytye Sistemy, No. 7, 36 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Larin.

Additional information

Original Russian Text © A.A. Rybakov, I.A. Bryukhanov, A.V. Larin, G.M. Zhidomirov, 2016, published in Neftekhimiya, 2016, Vol. 56, No. 3, pp. 277–285.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakov, A.A., Bryukhanov, I.A., Larin, A.V. et al. Theoretical aspects of methanol carbonylation on copper-containing zeolites. Pet. Chem. 56, 259–266 (2016). https://doi.org/10.1134/S0965544116030129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116030129

Keywords

Navigation