Skip to main content
Log in

A ZSM-5 zeolite-based catalyst for oligomerization of the butane–butylene fraction

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effect of localization of acid sites and the nature of the modifier metal on the activity, selectivity, and operation stability of a ZSM-5 zeolite-based catalyst in the oligomerization of the butane–butylene fraction (BBF) has been examined. It has been shown that the selective poisoning of acid sites on the external surface of zeolite crystals reduces coking and increases the yield of the desired gasoline fraction. Introduction of a promoter metal insignificantly affects the catalytic properties of the zeolite. Among Zn, Ga, and La, gallium appears to be the best modifier, which provides an increase in the yield of the desired gasoline fraction by 0.9%. As a result of the study, a BBF oligomerization catalyst has been developed that ensures a threefold increase in the catalyst on-stream time and a 7% increase in the yield of the gasoline fraction as compared with its commercial counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. T. O’Connor and M. Kojima, Catal. Today 6, 329 (1990).

    Article  Google Scholar 

  2. W. E. Garwood, P. D. Caesar, and J. A. Brennan, US Patent No. 4 150 062 (1972).

    Google Scholar 

  3. W. E. Garwood and W. Lee, US Patent No. 4227992 (1980).

    Google Scholar 

  4. R. J. Quann, L. A. Green, S. A. Tabak, and F. J. Krambeck, Ind. Eng. Chem. Res. 27, 565 (1988).

    Article  CAS  Google Scholar 

  5. S. A. Tabak, F. J. Krambeck, and W. E. Garwood, AIChE J. 32, 1526 (1986).

    Article  CAS  Google Scholar 

  6. J. P. van den Berg, K. H. W. Roebschlager, and I. E. Maxwell, in Proceedings of the North American Catalysis Society Meeting (1989).

    Google Scholar 

  7. J. Degnan, Top. Catal 13, 349 (2000).

    Article  CAS  Google Scholar 

  8. J. P. Berg and K. H. Robschlager, EP Patent No. 0 439 865 (1991).

    Google Scholar 

  9. M. Golombok and J. de Bruijn, Ind. Eng. Chem. Res. 39, 267 (2000).

    Article  CAS  Google Scholar 

  10. A. Coelho, G. Caeiro, M. Lemos, F. Lemos, F. R. Ribeirol, Fuel 111, 449 (2013).

    Article  CAS  Google Scholar 

  11. M. L. Occelli, J. T. Hsu, and L. G. Galaya, J. Mol. Catal. 32, 377 (2013).

    Article  Google Scholar 

  12. S. J. Miller, Stud. Surf. Sci. Catal. 38, 187 (1988).

    Article  Google Scholar 

  13. R. J. Pellet, P. K. Coughlin, E. S. Shamshoum, and J. A. Rabo, Perspectives in Molecular Sieve Science, vol. 386 of ACS Symposium Series, W. H. Flank and T. E. Whyte, Eds., (American Chemical Society, Washington, DC, 1988), p. 512.

  14. A. de Klerk, Energy Fuels 21, 3084 (2007).

    Article  Google Scholar 

  15. C. T. O’Connor, Handbook of Heterogeneous Catalysis, G. Ertl, H. Knözinger, F Schuöüth, and J. Weitkamp, Eds., (Wiley–VCH, Weinheim, 2008), p. 2854.

  16. F. B. du Toit, WO Patent No. 0 204 575 (2002).

    Google Scholar 

  17. A. Corma and S. Iborra, Catalysts for Fine Chemical Synthesis, vol. 4: Microporous and Mesoporous Solid Catalysts, E. G. Derouane, Ed., (Wiley, Chichester, 2006), p. 125.

  18. N. Y. Chen, Shape Selective Catalysis in Industrial Applications, vol. 65 of Chemical Industries, (CRC–Marcel Dekker; New York, 1996), 2nd Ed., p. 168.

    Google Scholar 

  19. A. G. Popov, RU Patent No. 2 555 879 (2013).

    Google Scholar 

  20. B. C. Lippens and J. H. de Boer, J. Catal. 4, 319 (1965).

    Article  CAS  Google Scholar 

  21. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, London, 1982), 2nd Ed.

    Google Scholar 

  22. J. C. P. Broekhoff and J. H. de Boer, J. Catal. 9, 15 (1967).

    Article  CAS  Google Scholar 

  23. M. Tamura, K. I. Shimizu, and A. Satsuma, Appl. Catal., A 433, 135 (2012).

    Article  Google Scholar 

  24. A. Corma, V. Fornes, L. Forni, F. Marquez, J. Martínez-Triguero, D. Moscott, J. Catal. 179, 451 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Popov.

Additional information

Original Russian Text © A.G. Popov, D.A. Fedosov, I. I. Ivanova, O.S. Vedernikov, A.V. Kleimenov, D.O. Kondrashev, V.D. Miroshkina, P.A. Abrashenkov, S.E. Kuznetsov, 2016, published in Neftekhimiya, 2016, Vol. 56, No. 3, pp. 255–261.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, A.G., Fedosov, D.A., Ivanova, I.I. et al. A ZSM-5 zeolite-based catalyst for oligomerization of the butane–butylene fraction. Pet. Chem. 56, 237–243 (2016). https://doi.org/10.1134/S0965544116030117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116030117

Keywords

Navigation