Skip to main content
Log in

Permeability of C1–C3 hydrocarbons through MDK membranes under nonisothermal conditions at lower temperatures

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The presented nonisothermal technique for investigation of membrane gas separation (using MDK-1 membrane as an example) demonstrates possibilities of rapid assessment of the separation power of commercial membranes for both individual components and various mixtures in the temperature range of‒20 to +40°C. The efficiency of the membrane process under these conditions (cross-flow membrane module model) for separation of propane–methane mixtures has been evaluated. It has been shown that the permeability of methane decreases with a decrease in temperature in the Arrhenius coordinates and the propane permeability increases. The separation selectivity in the mixture decreases by more than twofold in comparison with the ideal selectivity. Nevertheless, a significant improvement of separation has been observed at lower temperatures, with the recovery of the desired product and its purity being variable in a wide range depending on the practical goal. The nonisothermal technique is supposed to be useful for rapid selection of conditions (temperature, pressure, components to be separated) for efficient application of polymeric membranes for separation of hydrocarbon-containing mixtures that are close in composition to real gas sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. J. Kidnay, W. R. Parrish, and D. G. McCartney, Fundamentals of Natural Gas Processing (CRC, Boca Raton, 2011), 2nd Ed.

    Book  Google Scholar 

  2. A.G. Korzhubaev, D. A. Lamert, and L. V. Eder, Burenie Neft’, No. 4, 3 (2012).

    Google Scholar 

  3. S. I. Semenova, P. A. Vdovin, A. V. Tarasov, et al., Membrany, No. 4, 7 (2003).

    Google Scholar 

  4. R. W. Baker, Membrane Technology and Application (Wiley, Chichester, 2004), 2nd Ed.

    Book  Google Scholar 

  5. S. I. Semenova, J. Membr. Sci. 231, 189 (2004).

    Article  CAS  Google Scholar 

  6. M. Tirouni, M. Sadegh, and M. Pakizeh, Sep. Purif. Technol. 141, 394 (2015).

    Article  CAS  Google Scholar 

  7. E. Masuda, T. Isobe, K. Higashimura, and K. Takada, J. Am. Chem. Soc. 105, 7473 (1983).

    Article  CAS  Google Scholar 

  8. E. Yu. Sultanov, A. A. Ezhov, S. M. Shishatskiy, et al., Macromolecules 45, 1222 (2012).

    Article  CAS  Google Scholar 

  9. P. M. Budd, B. S. Ghanem, S. Makhseed, et al. Chem. Commun., No. 2, 230 (2004).

    Article  Google Scholar 

  10. C. H. Lau, P. Li, F. Li, et al., Progr. Polym. Sci. 38, 740 (2013).

    Article  CAS  Google Scholar 

  11. Yu. Yampolski, L. Starannikova, N. Belov, et al., J. Membr. Sci. 453, 532 (2014).

    Article  Google Scholar 

  12. R. D. Raharjo, B. D. Freeman, and E. S. Sanders, Polymer 48, 6907 (2007).

    Google Scholar 

  13. O. Vopička. M. G. DeAngelis, and G. C. Sarti, J. Membr. Sci. 449, 97 (2014).

    Article  Google Scholar 

  14. R. D. Raharjo, B. D. Freeman, D. R. Paul, and E. S. Sanders, Polymer 48, 7329 (2007).

    Article  CAS  Google Scholar 

  15. http://mt.borsig.de/en/produkte/gastrennung/borsigfuel-gas-conditioning.html

  16. www.mtrinc.com/natural_gas.html

  17. www.mtrinc.com/refinery_and_syngas.html

  18. http://mt.borsig.de/en/products/gas-separation/borsig-hydrogen-separation.html

  19. www.vladipor.ru/catalog/&cid=008

  20. J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975) 2nd Ed.

    Google Scholar 

  21. S. Mateucci, Yu. Yampolskii, B. D. Freeman, and I. Pinnau, Materials Science of Membranes for Gas and Vapor Separation, Ed, by Yu. Yampolskii, I. Pinnau, and B.D. Freeman (Wiley, Chichester, 2006), p. 1.

  22. I. N. Beckman, A. Yu. Golub, A. V. Yakovlev, and V. V. Teplyakov, Pet. Chem. 53, 460 (2013).

    Article  CAS  Google Scholar 

  23. I. N. Beckman and V. V. Teplyakov, Adv. Colloid Interface Sci. (2014). http://dx.doi.org/ doi 10.1016/j.cis.2014.10.004

    Google Scholar 

  24. J. Schultz and K.-V. Peinemann, J. Membr. Sci. 110, 37 (1996).

    Article  CAS  Google Scholar 

  25. V. V. Teplyakov, O. V. Malykh, O. L. Amosova, et al., Database, Certificate No. 2011 620 549 (2011) [in Russian].

    Google Scholar 

  26. V. V. Teplyakov, O. V. Malykh, O. L. Amosova, and R. A. Yastrebov, Computer Program, Certificate No. 2011 615 390 (2011) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zhmakin.

Additional information

Original Russian Text © V.V. Zhmakin, V.V. Teplyakov, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 1, pp. 64–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhmakin, V.V., Teplyakov, V.V. Permeability of C1–C3 hydrocarbons through MDK membranes under nonisothermal conditions at lower temperatures. Pet. Chem. 56, 335–343 (2016). https://doi.org/10.1134/S0965544115100278

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544115100278

Keywords

Navigation