Skip to main content
Log in

Dry reforming of methane in contactor and distributor membrane reactors

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Despite the well-known benefits of catalytic membrane reactors, they are still far from industrial implementation. Researchers who work in this area traditionally use catalytic membrane extractor reactors, which require the application of the most difficult to made catalytic membranes. Catalytic contactor and distributor membrane reactors are as yet imperfectly explored, although they have advantages over extractor reactors in many characteristics. This study is an attempt to fill, at least partially, the gap in understanding of the catalytic membrane process. On the assumption that a membrane-supported catalyst is a type of heterogeneous catalysts, the parameters of methane dry reforming in three catalytic reactors: a catalytic fixed-bed reactor, a contactor membrane reactor, and a distributor membrane reactor have been compared in terms of the classical kinetic method. The investigation has been carried out using the same catalytic system having tungsten carbide as the active component. It has been found that membrane reactors afford higher performance characteristics in the process of the dry reforming of methane, which occurs at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Barroso-Quiroga and A. E. Castro-Luna, Int. J. Hydrogen Energy 3, 6052 (2010).

    Article  Google Scholar 

  2. D. San-Jose-Alonso, J. Juan-Juan, M. J. Illan-Gomez, and M. C. Roman-Martinez, Appl. Catal., A 371, 54 (2009).

    Article  CAS  Google Scholar 

  3. L. Guczi, G. Stefler, and O. Geszti, Appl. Catal., A 375, 236 (2010).

    Article  CAS  Google Scholar 

  4. O. V. Krylov, Ross. Khim. Zh. 44 (1), 19 (2000).

    CAS  Google Scholar 

  5. D. C. LaMont and W. J. Thomson, Chem. Eng. Sci. 60, 3553 (2005).

    Article  CAS  Google Scholar 

  6. P. E. York, J. B. Claridge, A. J. Brungs, et al., Chem. Commun., No. 1, 39 (1997).

    Article  Google Scholar 

  7. T. Christofoletti, J. M. Assaf, and E. M. Assaf, Chem. Eng. J. 106, 97 (2005).

    Article  CAS  Google Scholar 

  8. U. Olsbye, T. Wurzel, and L. Mleczko, Ind. Eng. Chem. Res. 36, 5180 (1997).

    Article  Google Scholar 

  9. D. Sanfilippo and I. Miracca, Catal. Today 111, 133 (2006).

    Article  CAS  Google Scholar 

  10. S. Kaneko, T. Arakawa, M. Ohshima, et al., Appl. Catal., A 356, 80 (2009).

    Article  CAS  Google Scholar 

  11. F. Gallucci, S. Tosti, and A. Basile, J. Membr. Sci. 317, 96 (2008).

    Article  CAS  Google Scholar 

  12. S. Haag, M. Burgard, and B. Ernst, J. Catal. 252, 190 (2007).

    Article  CAS  Google Scholar 

  13. S. Miachon and J.-A. Dalmon, Top. Catal. 29, 59 (2004).

    Article  CAS  Google Scholar 

  14. G. F. Tereshchenko, A. A. Malygin, M. M. Ermilova, et al., Katal. Prom-sti., pets. Vyp., 36 (2008).

    Google Scholar 

  15. V. V. Skudin, Membr. Membr. Tekhnol. 2, 303 (2012).

    Google Scholar 

  16. M. L. Pritchard, R. L. McCauley, B. N. Gallaher, and W. J. Thomson, Appl. Catal., A 275, 213 (2004).

    Article  CAS  Google Scholar 

  17. V. V. Skudin and S. G. Strel’tsov, Membr. Krit. Tekhnol., No. 2, 22 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Skudin.

Additional information

Original Russian Text © T.V. Bucharkina, N.N. Gavrilova, A.S. Kryzhanovskiy, V.V. Skudin, D.A. Shulmin, 2013, published in Membrany Membrannye Tekhnologii, 2013, Vol. 3, No. 2, pp. 139–146.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucharkina, T.V., Gavrilova, N.N., Kryzhanovskiy, A.S. et al. Dry reforming of methane in contactor and distributor membrane reactors. Pet. Chem. 55, 932–939 (2015). https://doi.org/10.1134/S0965544115100023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544115100023

Keywords

Navigation