Skip to main content

Features of dicyclopentene formation during hydrogenation of dicyclopentadiene

Abstract

General trends and specific features of the reaction of dicyclopentadiene (tricyclo[5.2.1.02.6]decadiene-3,8) hydrogenation to dicyclopentene (tricycle[5.2.1.02.6]decene-3) with hydrogen in the liquid phase under mild conditions at atmospheric pressure over a finely divided 1% Pd/C catalyst have been studied. The kinetic parameters that characterize the effect of the solvent nature, catalyst concentration, and temperature on the rate of hydrogen uptake in the hydrogenation process have been determined. To substantiate the conclusion of the sequence of saturation of the dicyclopentadiene double bonds in terms of the mechanism of heterogeneous catalysis, their reactivity has been compared. It has been shown that in the presence of a number of functionalized aromatic compounds as a stabilizing additive, the yield of desired dicyclopentene increases to 98.5–99 mol % with the complete conversion of dicyclopentadiene. The structure of dicyclopentadiene and its hydrogenation product dicyclopentene has been confirmed using spectroscopic methods.

This is a preview of subscription content, access via your institution.

References

  1. T. N. Antonova, I. A. Abramov, V. Sh. Fel’dblyum, et al., Pet. Chem. 49, 366 (2009).

    Article  Google Scholar 

  2. T. N. Antonova, I. A. Abramov, G. B. Zakharova, et al., RU Patent No. 2459793; Byull. Izobret., No. 24, 5 (2012).

    Google Scholar 

  3. N. V. Vereshchagina, T. N. Antonova, I. G. Abramov, and G. Yu. Kopushkina, Pet. Chem. 54, 207 (2014).

    Article  CAS  Google Scholar 

  4. M. Arakawa, M. Chikazawa, and A. Katanosaka, US Patent No. 3629221 (1971).

  5. A. Ualikhanova, A. E. Temirbulatova, and B. T. Mailyubaev, Neftekhimiya 30, 458 (1990).

    CAS  Google Scholar 

  6. A. Behr, V. Manz, A. Lux, and A. Ernst, Catal. Lett. 143, 241 (2013).

    Article  CAS  Google Scholar 

  7. D. Skala and J. Hanika, Pet. Coal 45, 105 (2003).

    CAS  Google Scholar 

  8. M. Hao, B. Yang, H. Wang, and G. L. S. Qi, J. Phys. Chem. A 114, 3811 (2010).

    Article  CAS  Google Scholar 

  9. G. Liu, Z. Mi, L. Wang, and X. Zhang, Ind. Eng. Chem. Res. 44, 3846 (2005).

    Article  CAS  Google Scholar 

  10. J.-J. Zou, X. Zhang, J. Kong, and L. Wang, Fuel 87, 3655 (2008).

    Article  CAS  Google Scholar 

  11. K. M. Webber, US Patent No. 7078577 (2006).

  12. D. Skala and J. Hanika, Chem. Pap. 62, 215 (2008).

    Article  CAS  Google Scholar 

  13. E. Stefoglo, O. Jurkova, and V. Kornilova, Chem. React. Eng. 2, 518 (1987).

    CAS  Google Scholar 

  14. E. F. Stefoglo, Trickle-Bed Reactors (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  15. Chemical Reactivity and Reaction Paths, Ed. by G. Klopman (Wiley, New York, 1974).

    Google Scholar 

  16. D. V. Sokol’skii, Catalysis Mechanisms, Part I: Nature of Catalytic Action (Nauka, Novosibirsk, 1984), p. 87 [in Russian].

    Google Scholar 

  17. G. K. Boreskov, Heterogeneous Catalysis (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Antonova.

Additional information

Original Russian Text © N.V. Vereshchagina, T.N. Antonova, A.A. Il’in, Zh.B. Chirkova, 2016, published in Neftekhimiya, 2016, Vol. 56, No. 1, pp. 46–51.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vereshchagina, N.V., Antonova, T.N., Il’in, A.A. et al. Features of dicyclopentene formation during hydrogenation of dicyclopentadiene. Pet. Chem. 56, 38–43 (2016). https://doi.org/10.1134/S0965544115080198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544115080198

Keywords

  • dicyclopentadiene
  • dicyclopentene
  • liquid-phase hydrogenation
  • finely divided catalyst
  • double-bond reactivity