Skip to main content
Log in

Usage of cellulose acetate membranes for the sorption-luminescence determination of pyrene in aqueous media

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The applicability of cellulose acetate membranes (CAMs) as a solid matrix for the luminescence determination of pyrene in aqueous micellar solutions is shown. The effect of the concentrations of various surfactants, namely, anionic sodium dodecyl sulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB), and nonionic polyoxyethylene (10) mono-4-isooctyl phenyl ether (TX-100), on the fluorescence of pyrene in aqueous micellar solutions before and after sorption preconcentration and in an adsorbed state on a CAM has been studied. It has been found that the fluorescence intensity of pyrene on the solid-phase matrix increases as a result of pyrene solubilization in surfactant hemimiceles formed on the sorbent surface. The highest degree of pyrene extraction on CAMs has been achieved in the presence of cationic CTAB micelles. The CAM has a negative surface potential (−31.5 ± 2.5 mV), which affects the hydrocarbon recovery. The degree of extractlion and the polarity index of a microenvironment of pyrene molecules in solutions decrease in the order CTAB → SDS → TX-100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kamide, Cellulose and Cellulose Derivatives (Elsevier, Amsterdam, 2005).

    Google Scholar 

  2. Scientific Principles of Carbohydrate Chemical Technology, Ed. by A. G. Zakharov (LKI, Moscow, 2008), [in Russian].

    Google Scholar 

  3. A. Schaefer, A. Fane, and T. Waite, Nanofiltration: Principles and Applications (Elsevier, Amsterdam, 2004).

    Google Scholar 

  4. R. Zakaria, Hydrogen Separation Using Asymmetric Cellulose Acetate Hollow Fiber Membranes (University of Waterloo, Canada, 2006).

    Google Scholar 

  5. V. V. Parashchuk and A. V. Volkov, Membrany, No. 1 (37), 25 (2008).

    Google Scholar 

  6. R. W. Baker, Membrane Technology and Applications (Wiley, Chichester, 2012), 3rd Ed.

    Book  Google Scholar 

  7. M. Ulbricht, Polymer 47, 2217 (2006).

    Article  CAS  Google Scholar 

  8. I. V. Vorotyntsev, I. I. Grinval’d, I. Yu. Kalagaev, et al., Membr. Membr. Tekhnol. 3, 227 (2013).

    Google Scholar 

  9. A. I. Bon, G. L. Bon, L. V. Melekhina, et al., RUF Patent No. 2303481; Byull. Izobret., No. 7 (2007).

    Google Scholar 

  10. S. L. Zakharov, A. V. Efremov, and Yu. A. Pavlov, Nauch. Vestn. Mosk. Gos. Gorn. Univ., No. 2 (23), 39 (2012).

    Google Scholar 

  11. A. G. Pervov, Yu. V. Kozlova, A. P. Andrianov, and N. B. Motovilova, Membrany, No. 1 (29), 20 (2006).

    Google Scholar 

  12. H. Rusli, S. Gandasasmita, and M. B. Amran, Iran. Polym. J. 22, 335 (2013).

    Article  CAS  Google Scholar 

  13. M. G. Pozdeeva, T. O. Ryabukhova, and N. A. Okisheva, Sorb. Khromatograf. Protsessy 13, 462 (2013).

    CAS  Google Scholar 

  14. L. I. Valuev, T. A. Valueva, I. L. Valuev, and N. A. Plate, Usp. Biol. Khim. 43, 307 (2003).

    CAS  Google Scholar 

  15. J. Su, Q. Yang, J. F. Teo, and T.-S. Chung, J. Membr. Sci. 355, 36 (2010).

    Article  CAS  Google Scholar 

  16. S. Zhang, K. Yu. Wang, T.-S. Chung, et al., J. Membr. Sci. 360, 522 (2010).

    Article  CAS  Google Scholar 

  17. Y. He, G.-M. Li, H. Wang, et al., J. Taiwan Inst. Chem. En. 40, 289 (2009).

    Article  Google Scholar 

  18. C. Liu and R. Bai, J. Membr. Sci. 284, 313 (2006).

    Article  CAS  Google Scholar 

  19. H. Wu, X. Fang, X. Zhang, et al., Sep. Purif. Technol. 64, 183 (2008).

    Article  CAS  Google Scholar 

  20. T. P. N. Nguyen, E.-T. Yun, I.-C. Kim, and Y.-N. Kwon, J. Membr. Sci. 433, 49 (2013).

    Article  CAS  Google Scholar 

  21. B. Han, D. Zhang, Z. Shao, et al., Desalination 311, 80 (2013).

    Article  CAS  Google Scholar 

  22. L. Zhang, T. J. Menkhaus, and H. Fong, J. Membr. Sci. 319, 176 (2008).

    Article  CAS  Google Scholar 

  23. R. Konwarh, N. Karak, and M. Misra, Biotechnol. Adv. 31, 421 (2013).

    Article  CAS  Google Scholar 

  24. P. Plaza-Bolanos, A. G. Frenicha, and J. L. M. Vidal, J. Chromatogr., A 1217, 6303 (2010).

    Article  CAS  Google Scholar 

  25. G. V. Mel’nikov, T. I. Gubina, and O. A. Dyachuk, Russ. J. Phys. Chem. 80, 1160 (2006).

    Article  Google Scholar 

  26. O. A. Dyachuk, T. I. Gubina, and G. V. Melnikov, J. Anal. Chem. 64, 3 (2009).

    Article  CAS  Google Scholar 

  27. T. Saitoh, H. Itoh, and M. Hiraide, Talanta 79, 177 (2009).

    Article  CAS  Google Scholar 

  28. W. B. Wilson, A. A. Costa, H. Wang, et al., Microchem. J. 110, 246 (2013).

    Article  CAS  Google Scholar 

  29. G. Bernier and M. Lamotte, Rapid Chemical and Biological Techniques for Water Monitoring, Ed. by P. Quevauviller and R. Greenwood (Wiley, 2009), p. 275.

  30. S. G. Dmitrienko, E. Y. Gurariy, R. E. Nosov, and Y. A. Zolotov, Anal. Lett. 34, 425 (2001).

    Article  CAS  Google Scholar 

  31. V. Vasquez, M. E. Baez, M. Bravo, and E. Fuentes, Anal. Bioanal. Chem. 405(23), 7497 (2013).

    Article  CAS  Google Scholar 

  32. G. I. Romanovskaya, A. Yu. Olenin, and S. Yu. Vasil’eva, Russ. J. Phys. Chem. 85, 274 (2011).

    Article  CAS  Google Scholar 

  33. H. Wang and A. D. Campiglia, Talanta 83, 233 (2010).

    Article  CAS  Google Scholar 

  34. M. Ochsenkuhn-Petropoulou, K. Staikos, and G. Matuschek, J. Anal. Appl. Pyrol. 70, 73 (2003).

    Article  CAS  Google Scholar 

  35. I. I. Parashchenko, T. D. Smirnova, S. N. Shtykov, et al., J. Anal. Chem. 68, 112 (2013).

    Article  CAS  Google Scholar 

  36. A. P. Romani, A. E. H. Machado, N. Hioka, et al., J. Fluoresc. 19, 327 (2009).

    Article  CAS  Google Scholar 

  37. R. Guo, X. J. Zhu, and X. Guo, Colloid Polym. Sci. 281, 876 (2003).

    Article  CAS  Google Scholar 

  38. T. Liu and J. Wu, Colloid J. 70, 311 (2008).

    Article  CAS  Google Scholar 

  39. D. Yu, F. Huang, and H. Xu, Anal. Methods 4, 47 (2012).

    Article  CAS  Google Scholar 

  40. L. V. Levshin, S. N. Shtykov, I. Yu. Goryacheva, and G. V. Mel’nikov, Zh. Prikl. Spectrosk. 66, 201 (1999).

    Google Scholar 

  41. E. A. Amelina, I. V. Videnskii, N. I. Ivanova, et al., Vestn. Mosk. Univ., Ser. 2: Khim. 42, 49 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Straško.

Additional information

Original Russian Text © A.V. Straško, A.B. Shipovskaya, T.I. Gubina, O.N. Malinkina, A.G. Melnikov, 2015, published in Membrany i Membrannye Tekhnologii, 2015, Vol. 5, No. 1, pp. 39–47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straško, A.V., Shipovskaya, A.B., Gubina, T.I. et al. Usage of cellulose acetate membranes for the sorption-luminescence determination of pyrene in aqueous media. Pet. Chem. 55, 292–300 (2015). https://doi.org/10.1134/S096554411504009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554411504009X

Keywords

Navigation