Skip to main content
Log in

Effect of absorbent vapor on stability of characteristics of a composite PTMSP membrane on nonwoven polyester support during regeneration of diethanolamine solution in membrane contactor

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The regeneration of a carbon dioxide-loaded aqueous solution of diethanolamine (DEA) in a membrane contactor-stripper at a temperature of 100°C, an absorbent pressure of 10 atm, and a varying absorbent feed flow rate has been studied. The membranes used were laboratory samples of composite membranes prepared by deposition of thin separation layers of poly[1-(trimethylsilyl)-1-propyne] (PTMSP) on a porous support. The support was MFFK-1 microfiltration membrane (Vladipor) with the filtering porous layer of fluoroplastic F-42 (tetrafluoroethylene-vinylidene fluoride copolymer) deposited on a nonwoven polyethylene terephthalate (PET) support. After the first 10 days of testing, the CO2 flux at the membrane contactor outlet was reduced by a factor of 3 and then stabilized at 2 m3/(m2 h) within the next 80 days. It has been found that along with CO2 transport through the membrane, the vapor of the absorbent solution components is transferred. The concentration of DEA in the condensate was 0.5 wt %, that corresponds to the composition of equilibrium vapor over a 30 wt % DEA aqueous solution at 100°C. Since PTMSP is chemically resistant to the DEA solution at the regeneration temperature, the deterioration of the transport properties of the PTMSP/MFFK(PET) composite membrane with time during the absorbent regeneration is associated with the chemical degradation of the nonwoven PET support by the action of penetrating DEA vapor at a temperature of 100°C. It has been concluded that more chemically and thermally resistant porous supports such as ceramic microfiltration membranes should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Z. Qi and E. L. Cussler, J. Membr. Sci. 23, 321 (1985).

    Article  CAS  Google Scholar 

  2. Z. Qi and E. L. Cussler, J. Membr. Sci. 23, 333 (1985).

    Article  CAS  Google Scholar 

  3. S. Karoor and K. K. Sirkar, Ind. Eng. Chem. Res. 32, 674 (1983).

    Article  Google Scholar 

  4. P. H. M. Feron and A. E. Jansen, Energy Conv. Manage. 36, 411 (1995).

    Article  CAS  Google Scholar 

  5. D. deMontigny, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res. 44, 5726 (2005).

    Article  CAS  Google Scholar 

  6. A. Mansourizadeh and A. F. Ismail, J. Hazard. Mater. 171, 38 (2009).

    Article  CAS  Google Scholar 

  7. J. L. Li and B. H. Chen, Sep. Purif. Technol. 41, 109 (2005).

    Article  CAS  Google Scholar 

  8. S. Koonaphapdeelert, Z. Wu, and K. Li, Chem. Eng. Sci. 64, 1 (2009).

    Article  CAS  Google Scholar 

  9. A. Trusov, S. Legkov, L. J. P. Broeke, et al., J. Membr. Sci. 383, 241 (2011).

    Article  CAS  Google Scholar 

  10. A. Volkov, V. Vasilevsky, A. Runstraat, et al., Procedia Eng. 44, 332 (2012).

    Article  Google Scholar 

  11. E. Chabanon, B. Belaissaoui, and E. Favre, J. Membr. Sci. 459, 52 (2014).

    Article  CAS  Google Scholar 

  12. V. S. Khotimsky, M. V. Tchirkova, E. G. Litvinova, et al., J. Polym. Sci.: Part A: Polym. Chem. 41, 2133 (2003)

    Article  CAS  Google Scholar 

  13. N. R. Horn and D. R. Paul, Polymer 52, 5587 (2011).

    Article  CAS  Google Scholar 

  14. N. R. Horn and D. R. Paul, Macromol 45, 2820 (2012).

    Article  CAS  Google Scholar 

  15. L. S. Kocherlakota, Jr. D. B. Knorr, L. Foster, and R. M. Overney, Polymer 53, 2394 (2012).

    Article  CAS  Google Scholar 

  16. G. A. Dibrov, E. G. Novitskii, V. P. Vasilevskii, and V. V. Volkov, Pet. Chem. 54, 92 (2014).

    Google Scholar 

  17. Ashworth, M.R.F., Titrimetric Organic Analysis (Wiley, New York, 1961).

    Google Scholar 

  18. Handbook of Physical Quantities, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  19. Encyclopedia of Polymers (Sovetskaya Entsiklopediya, Moscow, 1972), Vol. 3 [in Russian].

  20. P. Moser, S. Schmidt, and K. Stahl, Energy Procedia 4, 473 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Bazhenov.

Additional information

Original Russian Text © S.D. Bazhenov, G.A. Dibrov, E.G. Novitsky, V.P. Vasilevsky, V.V. Volkov, 2014, published in Membrany i Membrannye Tekhnologii, 2014, Vol. 4, No. 3, pp. 202–207.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, S.D., Dibrov, G.A., Novitsky, E.G. et al. Effect of absorbent vapor on stability of characteristics of a composite PTMSP membrane on nonwoven polyester support during regeneration of diethanolamine solution in membrane contactor. Pet. Chem. 54, 617–621 (2014). https://doi.org/10.1134/S0965544114080015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544114080015

Keywords

Navigation