Petroleum Chemistry

, Volume 54, Issue 2, pp 111–119 | Cite as

Kinetics of thermal degradation of macromolecular petroleum compounds in the presence of fatty acid triglycerides

  • M. A. TimoshkinaEmail author
  • A. I. Yusevich
  • S. G. Mikhalenok
  • N. R. Prokopchuk


The kinetics of thermal degradation of high-molecular-mass fractions of crude oil mixed with rapeseed oil has been studied by dynamic thermogravimetry. The structural parameters of the average molecule of vacuum residues of crude oils processed at Naftan and the Mozyr refinery and hydrocarbon oils, resins, and asphaltenes isolated from the residues have been first determined by NMR and IR spectroscopy. It has been shown that the addition of rapeseed oil can increase the rate of thermal degradation of heavy petroleum residues, with the character of the effect of the vegetable oil on the kinetics of the process being determined by structural features of macromolecular petroleum compounds, namely, the relative amount of aromatic units and the length of alkyl chains.


thermal degradation vacuum residue hydrocarbon oils resins asphaltenes rapeseed oil thermogravimetry kinetics structural-group analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. M. Demirbas, Appl. Energy 86, 151 (2009).CrossRefGoogle Scholar
  2. 2.
    S. P. Singh and D. Singh, Renew. Sust. Energy Rev. 14, 200 (2010).CrossRefGoogle Scholar
  3. 3.
    S. A. Karpov, V. M. Kapustin, and A. K. Starkov, Motor Fuels with Bioethanol (KolosS, Moscow, 2007) [in Russian].Google Scholar
  4. 4.
    A. Demirbas, Appl.Energy 88, 17 (2011).CrossRefGoogle Scholar
  5. 5.
    V. A. Pozdeev, S. P. Safronov, S. V. Levanova, and E. L. Krasnykh, Russ. J. Appl. Chem. 85, 261 (2012).CrossRefGoogle Scholar
  6. 6.
    I. Kubickova and D. Kubicka, Waste Biomass Valorization 1, 293 (2010).CrossRefGoogle Scholar
  7. 7.
    M. A. Timoshkina, A. I. Yusevich, E. I. Grushova, and N. R. Prokopchuk, in Proceedings of II International Scientific-and-Practical Conference on Alternative Sources of Fuel and Raw Materials (Minsk, 2009), p. 30 [in Russian].Google Scholar
  8. 8.
    A. I. Yusevich, M. A. Timoshkina, and E. I. Grushova, Pet. Chem. 50, 231 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Yu. Dolmatov, L. M. Khashper, and Z. F. Kuz’mina, Khim. Tekhnol. Topl. Masel, No. 7, 35 (1991).Google Scholar
  10. 10.
    V. I. Isagulyants and G. M. Egorova, Petroleum Chemistry (Khimiya, Moscow, 1965) [in Russian].Google Scholar
  11. 11.
    I. N. Diyarov, I. Yu. Batueva, and A. N. Sadykov, Petroleum Chemistry (Khimiya, Leningrad, 1990) [in Russian].Google Scholar
  12. 12.
    M. A. Timoshkina and A. I. Yusevich, in Proceedings of International Scientific—Technical Conference “The Latest Advances in Import Substitution in the Chemical Industry and Manufacturing of Building Materials” (Minsk, 2012), Part 1, p. 253 [in Russian].Google Scholar
  13. 13.
    Aijun Guo, Xuejun Zhang, Zongxian Wang, Fuel Process. Technol. 89, 643 (2008).CrossRefGoogle Scholar
  14. 14.
    V. M. Potekhin and V. V. Potekhin, Fundamentals of the Theory of Chemical Processes in the Technology of Organic Compounds and Petroleum Refining (Khimizdat, St. Petersburg, (2005) [in Russian].Google Scholar
  15. 15.
    P. L. Gupta, P. V. Dogra, R. K. Kuchhal, and P. Kumar, Fuel 65, 515 (1986).CrossRefGoogle Scholar
  16. 16.
    T. F. Yen, W. H. Wu, and G. V. Chilingar, Energy Sources 4, 203 (1984).CrossRefGoogle Scholar
  17. 17.
    B. K. Sharma, et al., Pet. Sci. Technol. 25, 121 (2007).CrossRefGoogle Scholar
  18. 18.
    Instrumental Petroleum Investigation Techniques, Ed. by G. V. Ivanov (Nauka, Novosibirsk, 1987) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. A. Timoshkina
    • 1
    Email author
  • A. I. Yusevich
    • 1
  • S. G. Mikhalenok
    • 1
  • N. R. Prokopchuk
    • 1
  1. 1.Belarusian State Technological UniversityMinskBelarus

Personalised recommendations