Skip to main content
Log in

Process for producing high octane gasoline having lower benzene content and distillation end point with its environmental effect of engine exhaust emissions

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

In this research, a process is discussed for upgrading reformate and power former in Iraq’s Al-Doura refinery, by reducing the amount of benzene in the gasoline product with simultaneous reduction in the gasoline’s ASTM distillation end point. The process consists of fractionation of the reformate and power former to recover that fraction (90–180°C) of hydrocarbons. This was directly used as gasoline without further conversion. The heavy bottom fraction (180°C—EBP) consisting of the aromatic and non-aromatic hydrocarbons was recovered and used as antiknock additives to gasoline. The other fraction with (IBP—90°C) was used as feedstock to producing benzene by solvent extraction. The reformate and power former fractions (90–180°C) are blended with light straight run naphtha at ratio (75: 25) to producing gasoline as well as Al Doura gasoline. It was found that the amount of benzene was reduced from 1.41 wt % in the original pool to 1.37 and 1.31 in the alternative products. Engine emissions were also reduced when using the alternative products compared with original pool product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASTM:

American System Testing Method

BTX:

Benzene Toluene Xylene

EBP:

End Boiling Point

FCC:

Fluid Catalytic Cracking

HSRN:

Heavy Straight Run Naphtha

IBP:

Initial Boiling Point

LSRN:

Light Straight Run Naphtha

RON:

Research Octane Number

RVP:

Reid Vapor Pressure

U.S. Pat.:

United State Patent

References

  1. Tsuboi Katsumi, “Unleaded high octane gasoline composition,” United States Patent, 6187171 B1, 2001.

    Google Scholar 

  2. Al Doura Refinery, Light Oil Unit.

  3. A. Eh. Eiman Sheet and Jehad Yamin, International Journal of Chemical Engineering Research 2(3), 269 (2010).

    Google Scholar 

  4. Proj. 1390, Seorgi Baghdad Doura Refinery New Refining Complex Catalytic Reforming Unit Operating Manuol.

  5. N. Harandi Mohsen, “Process for production gasoline having lower benzene content and distillationend point,” US Patent no. 5347061, 1994.

    Google Scholar 

  6. Ed. by M. Imbriani, S. Ghittori, G. Pezzagno, and E. Capodaglio, “Update on benzene,” in Advances in Occupational Medicine and Rehabilitation, Vol. 2 (PI-ME Press, Pavia, Italy, 1995).

    Google Scholar 

  7. American Petroleum Institute (API): Analysis of Foods for Benzene, Ed. by W. P. Rose (Departmental Report Number DR 16) (National Food Laboratory/Health and Environmental Sciences Department, Washington D.C., 1992).

    Google Scholar 

  8. World Health Organization (WHO): Environmental Criteria 150: Benzene. Geneva: International Programme on Chemical Safety (IPCS), WHO/United Nations Environment Programme/International Labour Organisation, 1993.

  9. CONCAWE, CEFIC Aromatics Producers Association and EUROPIA: Benzene Risk Characterization (96TP 57), (Exxon Biomedical Services, East Millstone, N.J., 1996).

  10. R. R. Jacobs and W. Phanprasit, Am. Ind. Hyg. Assoc. J. 54, 569 (1993).

    Article  CAS  Google Scholar 

  11. H. Tsurutu, Ind. Health 20, 335 (1982).

    Article  Google Scholar 

  12. American Petroleum Institute (API): Absorption of Petroleum Products Across the Skin of Monkey and Man, Ed. by T. J. Franz (API Med. Res. Pub. 32-32749) (American Petroleum Institute/Health and Environmental Sciences Department, Washington, D.C., 1984).

    Google Scholar 

  13. I. H. Blank and D. J. McAuliffe, J. Invest. Dermatol. 85, 522 (1985).

    Article  CAS  Google Scholar 

  14. R. D. Edwards and M. J. Jantunen, Atmospheric Environment 35, 1411 (2001).

    Article  CAS  Google Scholar 

  15. P. R. D. Williams, J. M. Panko, K. Unice, J. L. Brown, and D. J. Paustenbach, Journal of Occupational and Environmental Hygiene 5, 565 (2008).

    Article  CAS  Google Scholar 

  16. D. K. Verma and K. des Tombe, AIHA Journal 63, 225 (2002).

    Article  CAS  Google Scholar 

  17. G. C. Sinclair, R. C. Wester, and H. I. Maibach, Deakin University, P.O. Box 210, Glen Iris, Victoria 3146, Australia, AIHA Journal 63(6), 685–688.

  18. D. K. Verma, D. M. Johnson, M. L. Shaw, and K. des Tombe, AIHAJ 62, 176 (2001).

    CAS  Google Scholar 

  19. M. A. Quddus, S. Ahmed, and S. N. Sarwar, Petroleum Science and Technology 25, 829 (2007).

    Article  CAS  Google Scholar 

  20. Swee-Cheng Foo, “Benzene pollution from gasoline usage,” Science of The Total Environment 103(1), 19 (1991).

    Article  CAS  Google Scholar 

  21. A. B. Lindstrom, V. R. Highsmith, T. J. Buckley, W. J. Pate, and L. C. Michael, J. Exposure Analysis and Environmental Epidemiology 4(2), 183 (1994).

    CAS  Google Scholar 

  22. R. E. Palmer, S. H. Kao, C. Tong, and D. R. Shipman, Hydrocarbon Processing, 2008, p. 55.

    Google Scholar 

  23. S. Chanvaivit, P. Navasumrit, P. Hunsonti, H. Autrup, and M. Ruchirawat, Mutat Res. 626(1–2), 79 (2006).

    Google Scholar 

  24. S. J. W. Adriaan and R. J. Lawson, “Process for reducing benzene content in gasoline,” US Patent no. 5120890, 1992.

    Google Scholar 

  25. S. G. C. Laredo, M. J. J. Castillo, P. F. Hernandez, M. C. R. Saint, G. M. C. del Martinez, C. F. J. Jimenez, R. O. de la Marroquin, and D. J. L. Cano, “Process for reducing benzene content of hydrocarbon stream using microporous carbon adsorbent,” US Patent no. 8354019, 2013.

    Google Scholar 

  26. A. A. Chin, N. A. Collins, M. N. Harandi, R. T. Thomson, and R. A. Ware, “Benzene reduction in gasoline by alkylation with higher olefins,” US Patent no. 5491270, 1996.

    Google Scholar 

  27. M. N. Harandi, H. Owen, and P. H. Schipper, “Process for producing gasoline having lower benzene content and distillation end point,” US Patent no. 5347061, 1994.

    Google Scholar 

  28. J.-C. Collin, B. Juguin, J. Larue, and A. Rojey, “Method of reducing the benzene content of gasolines,” US Patent no. 5185486, 1993.

    Google Scholar 

  29. J. W. A. Sachtler and R. J. Lawson, “Process for reducing benzene content in gasoline,” US Patent no. 5120890, 1992.

    Google Scholar 

  30. W. A. Groten and K. L. Rock, “Process for the production of low benzene gasoline,” US Patent no. 7175754, 2007.

    Google Scholar 

  31. E. A. Eh. Sheet, International Journal of Applied Engineering Research, ISSN 0973-4562 5(11), 1905 (2010).

    Google Scholar 

  32. IROX 2000 Portable Gasoline Analysis.

  33. E. A. Eh. Sheet and J. Yamin, Arabian Journal for Science and Engineering (Springer, 2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Ali Eh. Sheet.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheet, E.A.E., Alawi, N.M. Process for producing high octane gasoline having lower benzene content and distillation end point with its environmental effect of engine exhaust emissions. Pet. Chem. 54, 157–164 (2014). https://doi.org/10.1134/S0965544114020091

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544114020091

Keywords

Navigation