Skip to main content
Log in

Asymmetry of ion transport in hybrid MF-4SC membranes with a gradient distribution of hydrated zirconia

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Results of studies of the properties of hybrid MF-4SC membranes with a gradient distribution of hydrated zirconia nanoparticles through the thickness prepared by layer-by-layer casting from a polymer solution are described. The effect of the dopant concentration on the properties of the membranes is studied. At a low oxide concentration, the water uptake and ionic conductivity of the resulting samples increase compared to the original MF-4SC membrane. It is found that the diffusion permeability of HCl and NaCl solutions across these membranes exhibits an asymmetric behavior. It is shown that the diffusion permeability is higher in the case of diffusion of the solutions from the unmodified side of the membrane. The maximum asymmetry coefficient is obtained for a membrane containing 10% ZrO2 in the modified layer for the diffusion of 0.1 M HCl solution (38%). The causes of the diffusion permeability asymmetry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Xu, J. Membr. Sci. 263, 1 (2005).

    Article  CAS  Google Scholar 

  2. G. Pourcelly, V. V. Nikonenko, N. D. Pismenskaya, and A. B. Yaroslavtsev, Ionic Interactions in Natural and Synthetic Macromolecules, Ed. by A. Ciferri and A. Per- ico (Wiley, Hoboken, NJ, 2012) ch. 20.

  3. D. J. Jones and J. Roziere, Handbook of Fuel Cells: Fundamentals, Technology and Applications, vol. 3: Fuel Technology and Applications, Ed. by W. Vielstich, H. A. Gasteiger, and A. Lamm (Wiley, Chichester, 2003).

  4. B. P. Tripathi and V. K. Shali, Progr. Polym. Sci. 36, 945 (2011).

    Article  CAS  Google Scholar 

  5. G. Alberti and M. Casciola, Ann. Rev. Mater. Res. 33, 129 (2003).

    Article  CAS  Google Scholar 

  6. P. Apel, Y. E. Korchev, Z. Siwy, and R. Spohr, Nucl. Instrument. Methods Phys. Res. B 184, 337 (2001).

    Article  CAS  Google Scholar 

  7. I. D. Kosinska, A. Fulinski, and Z. Siwy, Europhys. Lett. 67, 683 (2004).

    Article  Google Scholar 

  8. Z. Siwy, I. D. Kosinska, A. Fulinski, and C. R. Martin, Phys. Rev. Lett. 94, 048102 (2005).

    Article  CAS  Google Scholar 

  9. A. A. Lysova, I. A. Stenina, Yu. G. Gorbunova, and A. B. Yaroslavtsev, Polym. Sci., Ser. B 53, 35 (2011).

    Article  CAS  Google Scholar 

  10. E. Yu. Voropaeva, A. A. Il’ina, A. S. Shalimov, et al., RU Patent No. 2352384 (2009).

    Google Scholar 

  11. E. Yu. Safronova and A. B. Yaroslavtsev, Membr. Membr. Tekhnol. 1(1), 76 (2011).

    Google Scholar 

  12. A. N. Filippov, V. M. Starov, N. A. Kononenko, and N. P. Berezina, Adv. Colloid Interface Sci. 139, 29 (2008).

    Article  CAS  Google Scholar 

  13. N. P. Berezina, N. A. Kononenko, A. N. Filippov, et al., Russ. J. Electrochem. 46, 485 (2010).

    Article  CAS  Google Scholar 

  14. V. I. Roldugin and V. M. Zhdanov, Adv. Colloid Interface Sci. 168, 223 (2011).

    Article  Google Scholar 

  15. A. B. Yaroslavtsev, E. Yu. Safronova, A. A. Lysova, et al., Desalin. Water Treatment 35, 202 (2011).

    Article  CAS  Google Scholar 

  16. A. B. Yaroslavtsev, Ross. Nanotekhnol. 7(9/10), 8 (2012).

    Google Scholar 

  17. A. B. Yaroslavtsev, V. V. Nikonenko, and V. I. Zabolotskii, Usp. Khim. 72, 438 (2003).

    Article  Google Scholar 

  18. S. A. Novikova, E. Yu. Safronova, A. A. Lysova, and A. B. Yaroslavtsev, Mendeleev Commun. 20, 156 (2010).

    Article  CAS  Google Scholar 

  19. V. V. Volkov, B. V. Mchedshvili, V. I. Roldugin, S. S. Ivanchev, and A. B. Yaroslavtsev, Ross. Nanotekhnol. 3(11/12), 67 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Safronova.

Additional information

Original Russian Text © E.Yu. Safronova, I.A. Prikhno, G. Pourcelly, A.B. Yaroslavtsev, 2013, published in Membrany i Membrannye Tekhnologii, 2013, Vol. 3, No. 4, pp. 308–313.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safronova, E.Y., Prikhno, I.A., Pourcelly, G. et al. Asymmetry of ion transport in hybrid MF-4SC membranes with a gradient distribution of hydrated zirconia. Pet. Chem. 53, 632–636 (2013). https://doi.org/10.1134/S0965544113080124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544113080124

Keywords

Navigation