Abstract
Recent years have seen a flurry of activity in research on the use of nanoparticles to improve the properties of polymeric membranes. It is known that the change in the macroscopic properties of these hybrid materials is associated with the parameters of the cluster of incorporated nanoparticles. The percolation threshold is higher than 15 vol % for the spherical particles and decreases with the increasing aspect ratio of the embedded nanoparticles of another shape. The paper presents the results of study on the permeability of gases (N2, O2, CH4 and C3H8) and a test liquid (ethanol) through hybrid membranes based on the glassy polymer poly(vinyltrimethylsilane) (PVTMS) with embedded multiwall carbon nanotubes (MWCNT) with a concentration of 0.3–3 wt %. It has been found that the permeability of gases and liquids alters at MWCNT concentrations above 0.4 wt %, which corresponds to the percolation threshold for the given particles as proved by calculations. In addition, the gas permeability coefficients measured indicate a change in the transport mechanism and selectivity of the membrane.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
R. D. Noble, J. Membr. Sci. 378, 393 (2011).
T. A. Vilgis, G. Heinrich, and M. Klüppel, Reinforcement of Polymer Nano-Composites: Theory, Experiments and Applications (Cambridge University Press, Cambridge, 2009).
H. Cong, M. Radosz, B. F. Towler, and Y. Shen, Sep. Purif. Technol. 55, 281 (2007).
A. Higuchi, T. Agatsuma, S. Uemiya, et al., J. Appl. Polym. Sci. 7, 529 (2000).
Y. Li, T.-S. Chung, C. Cao, and S. J. Kulprathipanja, J. Membr. Sci. 260, 45 (2005).
A. Sotto, A. Boromand, S. Balta, et al., J. Mater. Chem. 21, 10311 (2011).
J.-F. Li, Z. L. Xu, H. Yang, et al., J. Appl. Polym. Sci. 255, 4725 (2009).
S. Balta, A. Sotto, J. Kim, et al., J. Membr. Sci. 389, 155 (2012).
L. Yan, S. Hong, M. L. Li, and Y. S. Li, Sep. Purif. Technol. 66, 347 (2009).
K. Vanherck, I. Vankelecom, and T. Verbiest, J. Membr. Sci. 373, 5 (2011).
K.-T. Hsiao, J. Alms, and S. G. Advani, Nanotechnology 14, 791 (2003).
B. Fiedler, F. H. Gojny, H. G. Malte, et al., Comp. Sci. Technol. 66, 3115 (2006).
P. V. Kodgire, A. R. Bhattacharyya, S. Bose, et al., Chem. Phys. Lett. 432, 480 (2006).
J. Xiong, Z. Zheng, X. Qin, et al., Carbon 44, 2701 (2006).
K. Sangil, W. P. Todd, and M. Eva, Desalination 192, 330 (2006).
A. L. Andrady, T. C. Merkel, and L. G. Toy, Macromolecules 37, 4329 (2004).
D. Gomes, S. P. Nunes, and K.-V. Peinemann, J. Membr. Sci. 246, 13 (2005).
G. E. Pike and C. H. Seager, Phys. Rev. B 10, 1421 (1974).
Du Fangming, J. E. Fischer, and K. I. Winey, Phys. Rev. B 72, 121404 (2005).
K. Sangil, T. W. Pechar, and E. Marand, Desalination 192, 330 (2006).
L. Ge, Z. Zhu, F. Li, et al., J. Phys. Chem. C 115, 6661 (2011).
C. Jae-Hyun, J. Jonggeon, K. Woo-Nyon, and C. Ho-Sang, J. Appl. Polym. Sci. 111, 2186 (2009).
Y. Shirazi, M. A. Tofighy, and T. Mohammadi, J. Membr. Sci. 378, 551 (2011).
V. Vatanpour, S. S. Madaeni, R. Moradian, et al., J. Membr. Sci. 375, 284 (2011).
A. Sharma, B. Tripathi, and Y. K. Vijay, J. Membr. Sci. 361, 89 (2010).
S. Kumar, A. Sharma, B. Tripathi, et al., Micron 41, 909 (2010).
D. Gomes, S. P. Nunes, and K.-V. Peinemann, J. Membr. Sci. 246, 13 (2005)
A. P. Dementjev, D. V. Katorov, and E. G. Rakov, J. Inorg. Mater. 44, 219 (2008).
Yu. P. Yampol’skii, S. G. Durgaryan, and N. S. Nametkin, Vysokomol. Soedin., Ser. B 21, 616 (1979).
A. M. Grekhov, A. A. Belogorlov, A. A. Yushkin, and A. V. Volkov, J. Membr. Sci. 390/391, 160 (2012).
E. J. Garboczi, K. A. Snyder, and J. F. Douglas, Phys. Rev. E 52, 819 (1995).
T. I. Gombosi, Gaskinetic Theory (Cambridge University Press, London, 1994).
E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.M. Grekhov, Yu.S. Eremin, G.A. Dibrov, V.V. Volkov, 2013, published in Membrany i Membrannye Tekhnologii, 2013, Vol. 3, No. 3, pp. 168–174.
The article was translated by the authors.
Rights and permissions
About this article
Cite this article
Grekhov, A.M., Eremin, Y.S., Dibrov, G.A. et al. Percolation of composite poly(vinyltrimethylsilane) membranes with carbon nanotubes. Pet. Chem. 53, 549–553 (2013). https://doi.org/10.1134/S0965544113080069
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0965544113080069