Skip to main content
Log in

Percolation of composite poly(vinyltrimethylsilane) membranes with carbon nanotubes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Recent years have seen a flurry of activity in research on the use of nanoparticles to improve the properties of polymeric membranes. It is known that the change in the macroscopic properties of these hybrid materials is associated with the parameters of the cluster of incorporated nanoparticles. The percolation threshold is higher than 15 vol % for the spherical particles and decreases with the increasing aspect ratio of the embedded nanoparticles of another shape. The paper presents the results of study on the permeability of gases (N2, O2, CH4 and C3H8) and a test liquid (ethanol) through hybrid membranes based on the glassy polymer poly(vinyltrimethylsilane) (PVTMS) with embedded multiwall carbon nanotubes (MWCNT) with a concentration of 0.3–3 wt %. It has been found that the permeability of gases and liquids alters at MWCNT concentrations above 0.4 wt %, which corresponds to the percolation threshold for the given particles as proved by calculations. In addition, the gas permeability coefficients measured indicate a change in the transport mechanism and selectivity of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. R. D. Noble, J. Membr. Sci. 378, 393 (2011).

    Article  CAS  Google Scholar 

  2. T. A. Vilgis, G. Heinrich, and M. Klüppel, Reinforcement of Polymer Nano-Composites: Theory, Experiments and Applications (Cambridge University Press, Cambridge, 2009).

    Book  Google Scholar 

  3. H. Cong, M. Radosz, B. F. Towler, and Y. Shen, Sep. Purif. Technol. 55, 281 (2007).

    Article  CAS  Google Scholar 

  4. A. Higuchi, T. Agatsuma, S. Uemiya, et al., J. Appl. Polym. Sci. 7, 529 (2000).

    Article  Google Scholar 

  5. Y. Li, T.-S. Chung, C. Cao, and S. J. Kulprathipanja, J. Membr. Sci. 260, 45 (2005).

    Article  CAS  Google Scholar 

  6. A. Sotto, A. Boromand, S. Balta, et al., J. Mater. Chem. 21, 10311 (2011).

    Article  CAS  Google Scholar 

  7. J.-F. Li, Z. L. Xu, H. Yang, et al., J. Appl. Polym. Sci. 255, 4725 (2009).

    CAS  Google Scholar 

  8. S. Balta, A. Sotto, J. Kim, et al., J. Membr. Sci. 389, 155 (2012).

    Article  CAS  Google Scholar 

  9. L. Yan, S. Hong, M. L. Li, and Y. S. Li, Sep. Purif. Technol. 66, 347 (2009).

    Article  CAS  Google Scholar 

  10. K. Vanherck, I. Vankelecom, and T. Verbiest, J. Membr. Sci. 373, 5 (2011).

    Article  CAS  Google Scholar 

  11. K.-T. Hsiao, J. Alms, and S. G. Advani, Nanotechnology 14, 791 (2003).

    Article  CAS  Google Scholar 

  12. B. Fiedler, F. H. Gojny, H. G. Malte, et al., Comp. Sci. Technol. 66, 3115 (2006).

    Article  CAS  Google Scholar 

  13. P. V. Kodgire, A. R. Bhattacharyya, S. Bose, et al., Chem. Phys. Lett. 432, 480 (2006).

    Article  CAS  Google Scholar 

  14. J. Xiong, Z. Zheng, X. Qin, et al., Carbon 44, 2701 (2006).

    Article  CAS  Google Scholar 

  15. K. Sangil, W. P. Todd, and M. Eva, Desalination 192, 330 (2006).

    Article  Google Scholar 

  16. A. L. Andrady, T. C. Merkel, and L. G. Toy, Macromolecules 37, 4329 (2004).

    Article  CAS  Google Scholar 

  17. D. Gomes, S. P. Nunes, and K.-V. Peinemann, J. Membr. Sci. 246, 13 (2005).

    Article  CAS  Google Scholar 

  18. G. E. Pike and C. H. Seager, Phys. Rev. B 10, 1421 (1974).

    Article  Google Scholar 

  19. Du Fangming, J. E. Fischer, and K. I. Winey, Phys. Rev. B 72, 121404 (2005).

    Article  Google Scholar 

  20. K. Sangil, T. W. Pechar, and E. Marand, Desalination 192, 330 (2006).

    Article  Google Scholar 

  21. L. Ge, Z. Zhu, F. Li, et al., J. Phys. Chem. C 115, 6661 (2011).

    Article  CAS  Google Scholar 

  22. C. Jae-Hyun, J. Jonggeon, K. Woo-Nyon, and C. Ho-Sang, J. Appl. Polym. Sci. 111, 2186 (2009).

    Article  Google Scholar 

  23. Y. Shirazi, M. A. Tofighy, and T. Mohammadi, J. Membr. Sci. 378, 551 (2011).

    Article  CAS  Google Scholar 

  24. V. Vatanpour, S. S. Madaeni, R. Moradian, et al., J. Membr. Sci. 375, 284 (2011).

    Article  CAS  Google Scholar 

  25. A. Sharma, B. Tripathi, and Y. K. Vijay, J. Membr. Sci. 361, 89 (2010).

    Article  CAS  Google Scholar 

  26. S. Kumar, A. Sharma, B. Tripathi, et al., Micron 41, 909 (2010).

    Article  CAS  Google Scholar 

  27. D. Gomes, S. P. Nunes, and K.-V. Peinemann, J. Membr. Sci. 246, 13 (2005)

    Article  CAS  Google Scholar 

  28. A. P. Dementjev, D. V. Katorov, and E. G. Rakov, J. Inorg. Mater. 44, 219 (2008).

    Google Scholar 

  29. Yu. P. Yampol’skii, S. G. Durgaryan, and N. S. Nametkin, Vysokomol. Soedin., Ser. B 21, 616 (1979).

    Google Scholar 

  30. A. M. Grekhov, A. A. Belogorlov, A. A. Yushkin, and A. V. Volkov, J. Membr. Sci. 390/391, 160 (2012).

    Article  Google Scholar 

  31. E. J. Garboczi, K. A. Snyder, and J. F. Douglas, Phys. Rev. E 52, 819 (1995).

    Article  CAS  Google Scholar 

  32. T. I. Gombosi, Gaskinetic Theory (Cambridge University Press, London, 1994).

    Book  Google Scholar 

  33. E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Grekhov.

Additional information

Original Russian Text © A.M. Grekhov, Yu.S. Eremin, G.A. Dibrov, V.V. Volkov, 2013, published in Membrany i Membrannye Tekhnologii, 2013, Vol. 3, No. 3, pp. 168–174.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grekhov, A.M., Eremin, Y.S., Dibrov, G.A. et al. Percolation of composite poly(vinyltrimethylsilane) membranes with carbon nanotubes. Pet. Chem. 53, 549–553 (2013). https://doi.org/10.1134/S0965544113080069

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544113080069

Keywords

Navigation