Skip to main content
Log in

Hybrid materials based on MF-4SK perfluorinated sulfocatonic membranes and platinum

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Hybrid nanocomposites based on the MF-4SK membrane and platinum have been obtained by chemical reduction with sodium borohydride of H2[PtCl6] in solutions with varying concentration and reaction time. The resulting metal composites have been characterized using standard contact porosimetry and atomic force microscopy techniques and by measuring electric conductivity, permeability, and current-voltage curves. The particle size of metallic platinum has been determined, and the membrane surface roughness factor has been evaluated. Conditions for the preparation of samples with a uniform coating of the membrane surface with a platinum dispersion have been selected. A study of the polarization phenomena has revealed that the parameters of the current-voltage characteristic depend on the orientation of the membrane with respect to proton flux. The presence of platinum on the membrane surface leads to a change in the potential of the transition of the system to the overlimiting state and causes oscillations in the current-voltage curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Andreev, V. V. Mated, and S. A. Pisarev, Electrochemical 42, 1082 (2006).

    Google Scholar 

  2. V. N. Andreev and V. I. Zolotarevskii, Elektrokhimiya 41, 213 (2005).

    Google Scholar 

  3. N. P. Berezina, A. A.-P. Kubaisi, I. A. Stenina, et al., Ser. Krit. Tekhnol. Membr. 32(4), 48 (2006).

    Google Scholar 

  4. S. A. Grigor’ev, E. K. Lyutikova, E. G. Prituleok, et al., Elektrokhimiya 42, 1393 (2006).

    Google Scholar 

  5. T. A. Kravchenko, L. N. Polyanskii, A. I. Kalinichev, and D. V. Konev, Metal-Ion Exchanger Nanocomposites (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  6. A. D. Pomogailo, Ross. Khim. Zh. 46(5), 64 (2002).

    CAS  Google Scholar 

  7. I. Yu. Sapurina, M. E. Kompan, V. V. Malyshkin, et al., Elektrokhimiya 45, 744 (2009).

    Google Scholar 

  8. K. Juttner, K.-M. Mangold, M. Lange, and K. Bouzek, Elektrokhimiya 40, 359 (2004).

    Google Scholar 

  9. C. Heitner-Wirguin, J. Membr. Sci. 120, 1 (1996).

    Article  CAS  Google Scholar 

  10. I. Chorkendorff and J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics (Wiley-VCH, Weinheim, 2007; Intellekt, Dolgoprudnyi, 2010), [in Russian].

    Google Scholar 

  11. Polymer Electrochemistry, Ed. by M.R. Tarasevich, S. B. Orlov, E. I. Shkol’nikov, et al. (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  12. A. B. Yaroslavtsev, Usp. Khim. 78, 1094 (2009).

    Google Scholar 

  13. V. P. Gargolin, V. S. Gurskii, E. Yu. Kharitonova, and A. G. Shmatko, in Proceedings of VII Scientific-Technical Meeting on Problems and prospects for Future Development of Chemical and Electronic Control in Nuclear Power Engineering, Sosnovyi Bor, 2009.

  14. V. S. Gurskii, Yu. A. Oleinikova, E. Yu. Kharitonova, and A. G. Shmatko, in Proceedings of VII Scientific-Technical Meeting on Problems and prospects for Future Development of Chemical and Electronic Control in Nuclear Power Engineering, Sosnovyi Bor, 2009.

  15. RU Patent No. 2229325, 2003132803/28.

  16. RU Patent No. 2229326, 2003132804/28.

  17. S.-A. Sheppard, Sh. A. Campbell, J. R. Smith, et al., Analyst 123, 1923 (1998).

    Article  CAS  Google Scholar 

  18. F. Delinme, J. M. Leger, and C. Lamy, J. Appl. Electrochem. 28, 27 (1994).

    Article  Google Scholar 

  19. E. K. W. Lai, P. D. Beattie, F. P. Orfino, et al., Electrochim. Acta 44, 2559 (1999).

    Article  CAS  Google Scholar 

  20. V. I. Roldugin, Physical Chemistry of Surface Phenomena (Intellekt, Moscow, 2008) [in Russian].

    Google Scholar 

  21. Röntgen Fluoreszenz Analyse, Ed. by H. Ehrhardt (Verlag für Grundstoffindustrie, Leipzig, 1981; Metallurgiya, Moscow, 1985).

    Google Scholar 

  22. Yu. M. Volfkovich, V. S. Bagotzky, V. E. Sosenkin, and I. A. Blinov, Colloids Surf. A: Physicochem. Eng. Aspects 187–188, 349 (2001).

    Article  Google Scholar 

  23. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  Google Scholar 

  24. N. P. Berezina, N. A. Kononenko, A. A. Sytcheva, et al., Electrochim. Acta 54, 2342 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kononenko.

Additional information

Original Russian Text © N.P. Berezina, M.A. Chernyaeva, N.A. Kononenko, S.V. Dolgopolov, 2011, published in Membrany i membrannye tekhnologii, 2011, Vol. 1, No. 1, pp. 37–45.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezina, N.P., Chernyaeva, M.A., Kononenko, N.A. et al. Hybrid materials based on MF-4SK perfluorinated sulfocatonic membranes and platinum. Pet. Chem. 51, 506–513 (2011). https://doi.org/10.1134/S0965544111070036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544111070036

Keywords

Navigation