Skip to main content
Log in

On the mechanism of catalytic conversion of fatty acids into hydrocarbons in the presence of palladium catalysts on alumina

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A conversion of stearic acid into hydrocarbons in the presence of palladium on alumina has been studied. It has been shown that heptadecane and carbon monoxide are formed as the main products, diheptadecylketone is formed as a by-product, and the contribution of the decarbonylation reaction increases as compared to decarboxylation in the presence of hydrogen with an increase in its pressure. The formation of heptadecene and formic acid as intermediate products has allowed the conclusion that the cleavage of the carbon-carbon bond in the stearic acid molecule R-COOH takes place in the Pd coordination sphere, resulting in the formation of formic acid (or its fragment associated with palladium) and the corresponding olefinic product. Depending on the reaction conditions, formic acid and/or its fragment decompose, yielding CO and H2O or CO2 and H2. The main routes of the reaction have been simulated using quantum-chemical methods, and it has been shown that the reaction rate-limiting stage is the cleavage of C-C bond in the acid molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Berenblyum, V. Ya. Danyushevsky, E. A. Katsman, et al., Neftekhimiya 50, 17 (2010) [Pet. Chem. 50, 305 (2010)].

    Google Scholar 

  2. B. Smith, H. C. Greenwell, and A. Whiting, Energy Environ. Sci. 2, 262 (2009).

    Article  CAS  Google Scholar 

  3. T. Kalnes, T. Marker, and D. R. Shonnard, Int. J. Chem. Reactor Eng., Article A 48 (2007).

  4. P. M. Schenk, S. R. Thomas-Hall, E. Stephens, et al., Bioenerg. Res., No. 1, 20 (2008).

  5. I. Kubičková, M. Snåre, K. Eränen,et al., Catal. Today 106, 197 (2005).

    Article  Google Scholar 

  6. J. G. Immer, M. J. Kelly, and H. H. Lamb, Appl. Catal. A: Gen. 375, 134 (2010).

    Article  CAS  Google Scholar 

  7. J. G. Immer, PhD Dissertation, North Carolina State University (2010).

  8. L. Boda, G. Onyestyák, H. Solt, et al., Appl. Catal. A: Gen. 374, 158 (2010).

    Article  CAS  Google Scholar 

  9. Yizhi Xiang, Xiaonian Li, Chunshan Lu, et al. Appl. Catal. A: Gen. 375, 289 (2010).

    Article  CAS  Google Scholar 

  10. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).

    Article  CAS  Google Scholar 

  11. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996).

    Article  CAS  Google Scholar 

  12. D. N. Laikov, Chem. Phys. Lett. 416, 116 (2005).

    Article  CAS  Google Scholar 

  13. J. Cizek, Adv. Chem. Phys. 14, 35 (1969).

    Article  CAS  Google Scholar 

  14. The Aldrich Library of 13C and 1H FT NMR Spectra (Aldrich Chemical Company, Milwaukee, 1993).

  15. P. T. Do, M. Chiappero, L. L. Lobban, and D. E. Resasco, Catal. Lett. 130, 9 (2009).

    Article  CAS  Google Scholar 

  16. M. Snåre, I. Kubičková, P. Mäki-Arvela, et al., Ind. Eng. Chem. Res. 45, 5708 (2006).

    Article  Google Scholar 

  17. E. Stern and C. Timmons, Gillam and Stern’s Introduction to Electronic Absorption Spectroscopy in Organic Chemistry (Edward Arnold, London, 1970).

    Google Scholar 

  18. B. Donnis, R. G. Egeberg, P. Blom, and K. G. Knudsen, Top. Catal. 52, 229 (2009).

    Article  CAS  Google Scholar 

  19. M. Snåe, P. Mäki-Arvela, I. L. Simakova, et al., Russ. J. Phys. Chem. B 3, 1035 (2009).

    Article  Google Scholar 

  20. J. R. Rostrup-Nilsen, J. Sehested, and J. K. Norskov, Hydrogen and Synthesis Gas by Steam and CO2 Reforming (Academic, 2002).

  21. G. Patermarakis, Appl. Catal. A: Gen. 252, 231 (2003).

    Article  CAS  Google Scholar 

  22. I. S. Kolomnikov, M. B. Erman, V. P. Kukolev, and M. E. Vol’pin, Kinet. Katal. 13, 252 (1979).

    Google Scholar 

  23. G. Henrici-Olive and S. Olive, Coordination and Catalysis, (Verlag Chemie, Weinheim, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Berenblyum.

Additional information

Original Russian Text © A.S. Berenblyum, T.A. Podoplelova, R.S. Shamsiev, E.A. Katsman, V.Ya. Danyushevsky, 2011, published in Neftekhimiya, 2011, Vol. 51, No. 5, pp. 342–347.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berenblyum, A.S., Podoplelova, T.A., Shamsiev, R.S. et al. On the mechanism of catalytic conversion of fatty acids into hydrocarbons in the presence of palladium catalysts on alumina. Pet. Chem. 51, 336–341 (2011). https://doi.org/10.1134/S0965544111050069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544111050069

Keywords

Navigation