Petroleum Chemistry

, Volume 51, Issue 3, pp 151–156 | Cite as

Mesoporous aluminosilicates as components of gas oil cracking and higher-alkane hydroisomerization catalysts

  • S. V. Lysenko
  • I. O. Kryukov
  • O. A. Sarkisov
  • A. B. Abikenova
  • S. V. Baranova
  • V. A. Ostroumova
  • S. V. Kardashev
  • A. B. Kulikov
  • E. A. Karakhanov
Article

Abstract

Mesoporous aluminosilicates with a Si/Al ratio of 5 to 20, a pore diameter of 30 to 84 Å, and a specific surface area up to 1030 cm3/g have been prepared using hexadecylamine and Pluronic P123 as templates. These materials exhibit high activity in the cracking of hydrotreated vacuum gas oil. Bifunctional catalysts derived on their basis have high selectivity in the hydroisomerization of hexadecane.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Martin-Aranda and J. Cejka, Top. Catal. 53, 141 (2010).CrossRefGoogle Scholar
  2. 2.
    B. Viswanathan and J. Bindhu, Catal. Rev. 47, 1 (2005).CrossRefGoogle Scholar
  3. 3.
    A. Taguchi and F. Schuth, Micropor. Mesopor. Mater. 77, 1 (2005).CrossRefGoogle Scholar
  4. 4.
    G. Oye, J. Sjoblom, and M. Stocker, Adv. Colloid Interface Sci. 89–90, 439 (2001).CrossRefGoogle Scholar
  5. 5.
    OnD. Trong, D. Desplantier-Giscard, C. Danumah, and S. Kaliaguine, Appl. Catal., A 253, 545 (2003).CrossRefGoogle Scholar
  6. 6.
    O. A. Kholdeeva and N. N. Trukhan, Usp. Khim. 75(5), 460 (2006).Google Scholar
  7. 7.
    C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al., Nature 359, 710 (1992).CrossRefGoogle Scholar
  8. 8.
    J. S. Beck, J. C. Vartuli, W. J. Roth, et al., J. Am. Chem. Soc. 114, 10834 (1992).CrossRefGoogle Scholar
  9. 9.
    P. Yang, D. Zhao, D. I. Margolese, et al., Nature 396, 152 (1998).CrossRefGoogle Scholar
  10. 10.
    W. Cheng, E. Baudrin, B. Dunn, and J. I. Zink, J. Mater. Chem. 11, 92 (2001).CrossRefGoogle Scholar
  11. 11.
    M. Kang, D. Kim, S. H. Yi, et al., Catal. Today 93, 695 (2004).CrossRefGoogle Scholar
  12. 12.
    J. L. Blin, A. Leonard, Z. Y. Yuan, et al., Angew. Chem., Int. Ed. Engl. 42, 2872 (2003).CrossRefGoogle Scholar
  13. 13.
    J. A. Knowles and M. J. Hudson, J. Chem. Soc., Chem. Ñommun, 2083 (1995).Google Scholar
  14. 14.
    D. Khushalani, G. A. Ozin, and A. Kuperman, J. Mater. Chem. 9, 1491 (1999).CrossRefGoogle Scholar
  15. 15.
    A. Liepold, K. Roos, and W. Reschetilowski, Chem. Eng. Sci. 51, 3007 (1996).CrossRefGoogle Scholar
  16. 16.
    M. L. Occelli, S. Biz, A. Auroux, and G. J. Ray, Micropor. Mesopor. Mater. 26, 193 (1998).CrossRefGoogle Scholar
  17. 17.
    R. Mokaya and W. Jones, Chem.Commun, 981 (1996).Google Scholar
  18. 18.
    R. Mokaya and W. Jones, Chem.Commun, 983 (1996).Google Scholar
  19. 19.
    T. Chiranjeevi, KumaranG. Muthu, J. K. Gupta, and DharG. Murali, Termochim. Acta 443, 87 (2006).CrossRefGoogle Scholar
  20. 20.
    R. Mokaya and W. Jones, J. Catal. 172, 211 (1997).CrossRefGoogle Scholar
  21. 21.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, et al., Science 279, 548 (1998).CrossRefGoogle Scholar
  22. 22.
    D. Zhao, Q. Huo, J. Feng, and F. B. Chmelka, J. Am. Chem. Soc. 120, 6024 (1998).CrossRefGoogle Scholar
  23. 23.
    Y. Yue, A. Gedeon, J.-L. Bonardet, et al., Chem.Commun, 1967 (1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. V. Lysenko
    • 1
  • I. O. Kryukov
    • 1
  • O. A. Sarkisov
    • 1
  • A. B. Abikenova
    • 1
  • S. V. Baranova
    • 1
  • V. A. Ostroumova
    • 1
  • S. V. Kardashev
    • 1
  • A. B. Kulikov
    • 1
  • E. A. Karakhanov
    • 1
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations