Skip to main content
Log in

Intermolecular interactions in a disperse fuel system and their contribution to the mechanism of action of diesel fuel additives

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of action of additives for diesel fuel is studied in terms of molecular interactions. Using UV spectrophotometry, electron microscopy, conductivity, and other methods, we give experimental evidence of these interactions in diesel, including in the presence of additives. It is shown for the first time that the efficiency of diesel additives depends on the formation of new structures, such as charge-transfer complexes. Based on the analysis of the chemical structure of various additives, we make a conclusion that they all are classified as surfactants. It is known that diesel fuels are disperse fuel systems. Therefore, the experimental data on decreasing surface tension at the interface of a disperse fuel system in the presence of additives indicate that the additives are fuel stabilizers. A conclusion is drawn that additives that differ in chemical structure and have different functional purposes, including multifunctional additives, operate in a fuel disperse system by a common mechanism that is similar to the action of surfactants in classical disperse systems. This mechanism is associated with an increase in the stability of a disperse fuel system in the presence of additives and, as a consequence, with an improvement in its quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Terteryan, Depressor Additives for Crude Oils, Fuels and Lube Oils (Khimiya, Moscow, 1990) [in Russian].

    Google Scholar 

  2. S. T. Bashkatova, Diesel Additives (Khimiya, Moscow, 1994) [in Russian].

    Google Scholar 

  3. A. M. Danilov, Introduction to Fuel Chemistry (Tekhnika, OOO “TUMA GRUPP”, Moscow, 2003) [in Russian].

    Google Scholar 

  4. I. N. Grishina, Physicochemical Principles of Synthesis, Production, and Application of Improving Diesel Fuel Additives (Neft’ i Gaz, Moscow, 2007) [in Russian].

    Google Scholar 

  5. Z. I. Syunyaev, R. Z. Syunyaev, and R. Z. Safieva, Disperse Petroleum Systems (Khimiya, Moscow, 1990) [in Russian].

    Google Scholar 

  6. Yu. G. Frolov, Treatise of Colloid Chemistry: Surface Phenomena and Disperse Systems (Al’yans, Moscow, 2004) [in Russian].

    Google Scholar 

  7. T. P. Zhuze, Extended Abstract of Doctoral Dissertation in Chemistry (Moscow, 1949).

  8. T. P. Zhuze, Kolloidn. Zh. 13, 27 (1951).

    CAS  Google Scholar 

  9. L. G. Gurvich, Neft. Slants. Khoz., No. 8, 350 (1924).

  10. N. I. Chernozhukov, Neft. Slants. Khoz., No. 5, 355 (1924).

  11. P. I. Sanin, N. V. Melent’eva, and Yu. M. Zelenova, Kolloidn. Zh. 18, 745 (1956).

    CAS  Google Scholar 

  12. J. Denis and J-P. Durand, Rev. Inst. Francais Pet. 46, 637 (1991).

    CAS  Google Scholar 

  13. G. Odian, Principles of Radical Polymerization (McGraw-Hill, New York, 19970; Mir, Moscow, 1974).

    Google Scholar 

  14. Kh. S. Bagdasar’yan, Theory of Radical Polymerization (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  15. S. E. Bresler and B. L. Erusalimskii, Physics and Chemistry of Macromolecules (Nauka, Leningrad, 1965) [in Russian].

    Google Scholar 

  16. D. Shevtsov, Avtorevyu, No. 21, 1 (2002).

  17. A. A. Tager, in Physical Chemistry of Polymers (Khimiya, Moscow, 1968) [in Russian].

    Google Scholar 

  18. V. A. Kargin and G. L. Slonimskii, Short Essays on Physical Chemistry of Polymers (Khimiya, Moscow, 1967) [in Russian].

    Google Scholar 

  19. S. T. Bashkatova, A. S. Kazanskaya, and V. A. Vinokurov, Theoretical Principles of Application of Polymer Solutions in Oil and Gas Industry: A Textbook (Neft i Gaz, Moscow, 2005) [in Russian].

    Google Scholar 

  20. E. N. Kabanova, Extended Abstract of Candidate’s Dissertation in Technical Science (Moscow, 2006).

  21. G. V. Tolstova, G. I. Shor, B. A. Englin, et al., Khim. Tekhnol. Topl. Masel, No. 2, 38 (1980).

  22. L. I. Mekenitskaya, S. T. Bashkatova, and O. B. Semenov, (1988).

  23. S. T. Bashkatova and V. A. Vinokurov, RU Patent No. 2119528 (1997).

  24. G. N. Lanchakov, E. N. Kabanova, S. T. Bashkatova, et al., RU Patent No. 2280067 (2005).

  25. G. N. Lanchakov, E. N. Kabanova, S. T. Bashkatova, et al., RU Patent No. 2280068 (2005).

  26. G. N. Lanchakov, E. N. Kabanova, S. T. Bashkatova, et al., RU Patent No. 2280069 (2005).

  27. R. S. Suleimanov, O. P. Kabanov, O. E. Obukhov, et al., RU Patent No. 2320705 (2006).

  28. R. S. Suleimanov, V. A. Stavitskii, O. P. Kabanov, et al., RU Patent No. 2320706 (2006).

  29. R. S. Suleimanov, S. V. Sorokin, O. P. Kabanov, et al., RU Patent No. 2320707 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Bashkatova.

Additional information

Original Russian Text © S.T. Bashkatova, V.A. Vinokurov, I.N. Grishina, Yu.B. Egorkina, 2011, published in Neftekhimiya, 2011, Vol. 51, No. 5, pp. 369–375.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashkatova, S.T., Vinokurov, V.A., Grishina, I.N. et al. Intermolecular interactions in a disperse fuel system and their contribution to the mechanism of action of diesel fuel additives. Pet. Chem. 51, 363–369 (2011). https://doi.org/10.1134/S0965544111030030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544111030030

Keywords

Navigation