Advertisement

Petroleum Chemistry

, Volume 51, Issue 1, pp 61–69 | Cite as

Preparation of high-octane oxygenate fuel components from plant-derived polyols

  • A. L. MaksimovEmail author
  • A. I. Nekhaev
  • D. N. Ramazanov
  • Yu. A. Arinicheva
  • A. A. Dzyubenko
  • S. N. Khadzhiev
Article

Abstract

The ketalization of polyols (glycerol, xylitol, xylose) in the presence of a number of heterogeneous acid catalysts has been studied. It has been shown that zeolite catalysts exhibit high activity in the formation of the acetone ketal of glucose in a flow system with the quantitative selectivity for the 1,2-product. The best catalyst is zeolite beta; in the presence of this zeolite and excess acetone, the yield is over 90% or, in the case of the structured reactor, even greater than 98% It has been shown that zeolite-based systems catalyze the formation of ketals of xylitol and xylose with a yield of up to 50% in the presence of excess acetone.

Keywords

Zeolite Xylose Polyol Xylitol Petroleum Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Yeh, P. Nicholas, N. P. Lutsey, and N. C. Parker, Environ. Sci. Technol. 43, 6907 (2009).CrossRefGoogle Scholar
  2. 2.
    Country Analysis Briefs: Brazil (Energy Information Administration, U.S. Department of Energy, Washington, DC, 2009).Google Scholar
  3. 3.
    Directive 2009/28/EC of the European Parlament and of the Council, Off. J. Eur. Union. L 140/16 (2009).Google Scholar
  4. 4.
    B. Kamm, P. R. Gruber, and M. Kamm, Biorefineries-Industrial Processes and Products: Status Quo and Future Directions (Wiley-VCH, 2006), vols. 1, 2.Google Scholar
  5. 5.
    M. C. Vale, G. S. Lopes, and S. T. Gouveia, Fuel 88, 1955 (2009).CrossRefGoogle Scholar
  6. 6.
    E. Garcia, M. Laca, E. Perez, et al., Energy Fuels 22, 4274 (2008).CrossRefGoogle Scholar
  7. 7.
    US Patent no. 5308365 (1994).Google Scholar
  8. 8.
    US Patent no. 5476971 (1995).Google Scholar
  9. 9.
    C.-H. Zhou, J. N. Beltramin, Y.-X. Fan, and G. Q. Lu, Chem. Soc. Rev. 37, 527 (2008).CrossRefGoogle Scholar
  10. 10.
    WO Patent no. 093015 (2005).Google Scholar
  11. 11.
    US Patent no. 0025417 (2004).Google Scholar
  12. 12.
    R. Wessendorf, Erdoel, Kohle, Erdgas, Petrochem. 48, 138 (1995).Google Scholar
  13. 13.
    C. J. A. Mota, C. X. A. Silva, and N. Rosenbach, Energy Fuels 24, 2733 (2010).CrossRefGoogle Scholar
  14. 14.
    RU Patent no. 2365617 (2009).Google Scholar
  15. 15.
    US Patent no. 5917059 (1999).Google Scholar
  16. 16.
    J. S. Clarkson, A. J. Walker, and M. A. Wood, Org. Proc. Res. Dev. 5, 630 (2001).CrossRefGoogle Scholar
  17. 17.
    C. X. A. Silva, V. L. C. Goncalves, and C. J. A. Mota, Green Chem. 11, 38 (2009).CrossRefGoogle Scholar
  18. 18.
    J. Deutsch, A. Martin, and H. Lieske, J. Catal. 245, 428 (2007).CrossRefGoogle Scholar
  19. 19.
    L. Roldan, R. Mallada, J. M. Fraile, et al., Asia-Pac. J. Chem. Eng. 4, 279 (2009).CrossRefGoogle Scholar
  20. 20.
    A. L. Maksimov, A. I. Nekhaev, D. S. Shlyakhtitsev, et al., Neftekhimiya 50, 339 (2010) [Pet. Chem. 50, (2010)].Google Scholar
  21. 21.
    P. Ferreira, I. M. Fonseca, A. M. Ramos, et al., Appl. Catal. B: Environ. 98, 94 (2010).CrossRefGoogle Scholar
  22. 22.
    G. Vicente, J. A. Melero, G. Morales, et al., Green Chem. 12, 899 (2010).CrossRefGoogle Scholar
  23. 23.
    M. Kitamura, M. Isobe, Y. Ichikawa, and T. Goto, J. Am. Chem. Soc. 106, 3252 (1984).CrossRefGoogle Scholar
  24. 24.
    R. Albert, K. Dax, R. Pleschko, and A. E. Stuetz, Carbohydr. Res. 137, 282 (1985).CrossRefGoogle Scholar
  25. 25.
    P. P. Singh, M. M. Gharia, F. Dasgupta, and H. C. Srivastava, Tetrahedron Lett., 439 (1977).Google Scholar
  26. 26.
    B. Lal, R. M. Gidwani, and R. H. Rupp, Synthesis, 711 (1989).Google Scholar
  27. 27.
    C.-C. Lin, M.-D. Jan, S.-S. Weng, et al., Carbohydr. Res. 341, 1948 (2006).CrossRefGoogle Scholar
  28. 28.
    P. R. M. Nair, P. M. Shah, and B. Sreenivasan, Starch 33, 384 (1981).CrossRefGoogle Scholar
  29. 29.
    J.-I. Asakura, Y. Matsubara, and M. J. Yoshihara, Carbohydr. Chem. 15, 231 (1996).CrossRefGoogle Scholar
  30. 30.
    A. P. Rauter, F. Ramoa-Ribeiro, A. C. Fernandes, and J. A. Figueiredo, Tetrahedron 51, 6529 (1995).CrossRefGoogle Scholar
  31. 31.
    M. A. Nadtochii, L. E. Burova, I. V. Vasil’eva, and T. A. Melent’eva, Khim.-Farm. Zh. 35, 282 (2001).Google Scholar
  32. 32.
    V. K. Rajput and B. Mukhopadhyay, Tetrahedron Lett. 47, 5939 (2006).CrossRefGoogle Scholar
  33. 33.
    S. N. Khadzhiev and I. M. Gerzeliev, Chem. J. March, 50, (2010).Google Scholar
  34. 34.
    D. M. Clode, Chem. Rev. 79, 491 (1979).CrossRefGoogle Scholar
  35. 35.
    M. J. Climent, A. Corma, S. Iborra, et al., J. Catal. 161, 783 (1996).CrossRefGoogle Scholar
  36. 36.
    F. M. H. Randall and J. M. Webber, J. Chem. Soc., 3368 (1965).Google Scholar
  37. 37.
    A. Corma, M. J. Climent, H. Garcia, and J. Primo, Appl. Catal. A: Gen. 59, 333 (1990).CrossRefGoogle Scholar
  38. 38.
    R. Ballini, G. Bosica, B. Frullanti, et al., Tetrahedron Lett. 39, 1615 (1998).CrossRefGoogle Scholar
  39. 39.
    M. J. Climent, A. Velty, and A. Corma, Green Chem. 4, 565 (2002).CrossRefGoogle Scholar
  40. 40.
    E. E. Mallon, A. Bhan, and M. Tsapatsis, Phys. Chem. B 114, 1939 (2010).CrossRefGoogle Scholar
  41. 41.
    A. H. Yonli, I. Gener, and S. Mignard, Micropor. Mesopor. Mater. 132, 37 (2010).CrossRefGoogle Scholar
  42. 42.
    V. L. C. Goncalves, B. P. Pinto, J. C. Silva, and C. J. A. Mota, Catal. Today 133, 673 (2008).CrossRefGoogle Scholar
  43. 43.
    J. Tateiwa, H. Hiriuchi, and S. Uemura, J. Org. Chem. 60, 4043 (1995).CrossRefGoogle Scholar
  44. 44.
    G. W. Bodamer and R. Kunin, Ind. Eng. Chem. 45, 2577 (1953).CrossRefGoogle Scholar
  45. 45.
    A. Corma, S. Iborra, S. Miquel, and J. Prinio, J. Catal. 161, 713 (1996).CrossRefGoogle Scholar
  46. 46.
    J. F. Chapat, A. Finiels, J. Joffre, and C. Moreau, J. Catal. 185, 445 (1999).CrossRefGoogle Scholar
  47. 47.
    R. A. Sheldon and H. van Bekkum, Fine Chemicals through Heterogeneous Catalysis (Wiley-VCH, Weinheim, 2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. L. Maksimov
    • 1
    Email author
  • A. I. Nekhaev
    • 1
  • D. N. Ramazanov
    • 1
  • Yu. A. Arinicheva
    • 1
  • A. A. Dzyubenko
    • 1
  • S. N. Khadzhiev
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations