Abstract
Iron-manganese oxides are prepared using a co-precipitation procedure and studied for the conversion of synthesis gas to light olefins. In particular, the effect of a range of preparation variables is investigated in details. In this investigation, sulfur absorption and effect of sulfur poisoning on Fe-Mn catalysts have been studied. In the Fischer-Tropsch synthesis process, the poisoning of the catalyst is one of the important parameters causing a decrease in the catalyst activity, declaring the sulfur compounds as virulent poisons in this process. In the present investigation, poisoning of Fe-Mn catalysts were performed in a gas circulation system and H2S was injected into a circulation loop. The prepared catalysts were exposed to a mixture of H2S and N2 at about 450°C in the stainless-steel micro reactor via co-precipitation method. H2S was produced by addition of H2SO4 to Na2S × H2O and this gas was mixed with an inert carrier gas (N2). Comparing the activity and selectivity of fresh and poisoned catalysts, indicates that the selectivity and CO conversion are affected by high-level sulfur adsorbed on the catalysts. The results show that the CO conversion and selectivity with respect to methane production and coke formation were decreased, but the selectivity of light alkenes such as propylene was increased over poisoned catalysts. Characterization of both precursors and calcined catalysts by powder X-ray diffraction, BET specific surface area and thermal analysis methods such as TGA and DSC showed that the poisoning of Fe-Mn catalysts influenced the catalyst structure.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
P. A. Chernavskii, Kinet. Catal. 46(5), 634 (2005).
A. Sarkar, G. Jacobs, Y. Ji, et al., Catal. Lett. 121(1), 1 (2007).
L. A. Vytnova, E.I. Bogolepova, A. N. Shuikin, et al., Pet. Chem. 46(2), 103 (2006).
B. H. Davis, Top. Catal. 32(3), 143 (2005).
L. A. Vytnova, E. I. Bogolepova, A. N. Shuikin, et al., Pet. Chem. 46(5), 324 (2006).
M. N. Yakubovich, Pet. Chem. 48(1), 32 (2008).
A. Y. Krylova and E. A. Kozyukov, Solid Fuel Chem. 41(6), 335 (2007).
W. Linghu, X. Liu, X. Li, and K. Fujimoto, Catal. Lett. 108(1), 11 (2006).
M. N. Yakubovich and V. L. Struzhko, Pet. Chem. 46(4), 257 (2006).
E. G. Derouane, V. Parmon, F. Lemos, and F. R. Ribeiro, Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities in NATO Science Series II: Mathematics, Physics and Chemistry, 191 (2005).
C. H. Zhang, Y. Yang, B. T. Teng, et al., J. Catal. 237(2), 405 (2006).
J. Yang, Y. Sun, Y. Tang, et al., J. Mol. Catal., A: Chem. 245(1–2), 26 (2006).
A. Martinez and C. Lopez, Appl. Catal., A 294(2), 251 (2005).
C. Zhang, B. Teng, Y. Yang, et al. J. Mol. Catal., A: Chem. 239(1–2), 15 (2005).
J. Li and N. J. Coville, Appl. Catal., A 181(1), 201 (1999).
J. Li and N. J. Coville, Appl. Catal., A 208(1–2), 177 (2001).
L. Shi, J. Chen, K. Fang, and Y. Sun, Fuel 87(4–5), 521 (2008).
B. Shi, G. Jacobs, D. Sparks and B. H. Davis, Fuel 84(9), 1093 (2005).
T. Li, Y. Yang, C. Zhang, et al., Fuel 86(7–8), 921 (2007).
A. Raje, J. R. Inga, and B. H. Davis, Fuel 76(3), 273 (1997).
B. T. Teng, J. Chang, J. Yang, et al., Fuel 84(7–8), 917 (2005).
B. Wu, L. Bai, H. Xiang, et al., Fuel 83(2), 205 (2004).
L. Bai, H. W. Xiang, Y. W. Li, et al., Fuel 81(11–12), 1577 (2002).
J. He, Y. Yoneyama, B. Xu, et al., Langmuir 21(5), 1699 (2005).
T. S. Zhao, J. Chang, Y. Yoneyama, and N. Tsubaki, Ind. Eng. Chem. Res. 44(4), 769 (2005).
Y. Yoneyama, J. He, Y. Morii, et al., Catal. Today 104(1), 37 (2005).
A. Zhang, M. Kaiho, H. Yasuda, et al., Energy 30(11–12), 2243 (2005).
C. Costabile, G. Milano, and L. Cavallo, et al., Polymer 45(2), 467 (2004).
C. H. Tsai and T. H. Hsieh, Ind. Eng. Chem. Res. 43(15), 4043 (2004).
N. O. Ikenaga, H. Taniguchi, A. Watanabe, and T. Suzuki, Fuel 79(3–4), 273 (2000).
A. Martino, J. P. Wilcoxon, and J. S. Kawola, Energy Fuels 8(6), 1289 (1994).
M. Yamada, N. Koizumi, A. Miyazawa, and T. Furukawa, Catal. Lett. 78(1–4), 195 (2002).
J. Beck and T. Hilbertt, Chemie 626(1), 72 (2000).
T. Kaneko, T. Koyama, K. Tazawa, et al., J. Jpn. Inst. Energy 77(1), 321 (1998).
S. Vijay, E. E. Wolf, J. T. Miller, and A. J. Kropf, Appl. Catal. 264(1), 125 (2004).
J. W. N. Verdite, Spectroscopy in Catalysts, 2nd Ed., Wiley-VCH, 2000.
S. J. Tauster, S. C. Fung, and R. L. Garten, J. Am. Chem. Soc. 100(1), 170 (1978).
H. B. Zhang and G. L. Schrader, J. Catal. 95(1), 325 (1985).
M. D. Shroff, D. S. Kalakkad, and K. E. Coulter, et al., J. Catal. 156(2), 185 (1995).
Y. Yang, H. W. Xiang, Y. Y. Xu, et al., Appl. Catal., A 266(2), 181 (2004).
A. A. Mirzaei, R. Habibpour, and E. Kashi, Appl. Catal., A 296(2), 222 (2005).
A. A. Mirzaei, M. Faizi, and R. Habibpour, Appl. Catal., A 306, 98 (2006).
A. A. Mirzaei, R. Habibpour, M. Faizi, and E. Kashi, Appl. Catal., A 301(2), 272 (2006).
Author information
Authors and Affiliations
Corresponding author
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Hadadzadeh, H., Mirzaei, A.A., Morshedi, M. et al. The effect of H2S on the selectivity of light alkenes in the FE-Mn-catalyzed Fischer-Tropsch synthesis. Pet. Chem. 50, 78–86 (2010). https://doi.org/10.1134/S0965544110010123
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0965544110010123