Skip to main content
Log in

Kinetic parameters and geometry of the transition state in the unimolecular degradation of alcohols

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Experimental data on the unimolecular degradation of structurally different alcohols, alkanols into water and an olefin and alkenols into a carbonyl compound and an olefin, were analyzed in terms of the method of crossing parabolas. The kinetic parameters characterizing such decomposition were calculated and factors that affect the activation energy of the reaction (the cycle strain energy, the steric factor, and the effect of π electrons neighboring the reaction center) were determined. The activation energies and the rate constants were calculated for 30 alcohol degradation reactions. The enthalpies, the activation energies, and the rate constants of degradation of unsaturated alcohols were compared for two different degradation routes yielding a carbonyl compound and an olefin or resulting in water and an olefin. Quantum-chemical calculations of the transition states for three model reactions were performed. The activation energies and the rate constants were obtained for the first time for 13 reverse reactions of the addition of carbonyl compounds to olefins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Semenov, Selected Works, vol. 4: Some Problems in Chemical Kinetics and Reactivity (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  2. Comprehensive Chemical Kinetics: Decomposition and Isomerisation of Organic Compounds, Ed. by C. H. Bamford and C. F. H. Tipper (Elsevier, Amsterdam, 1972), Vol. 5, p. 443.

    Google Scholar 

  3. T. S. Pokidova and E. T. Denisov, Neftekhimiya 46(2), 100 (2006) [Pet. Chem. 46, 84 (2006)].

    CAS  Google Scholar 

  4. T. S. Pokidova and E. T. Denisov, Khim. Fiz. 25(6), 33 (2006).

    CAS  Google Scholar 

  5. E. T. Denisov, Usp. Khim. 66(10), 953 (1997).

    CAS  Google Scholar 

  6. E. T. Denisov, Usp. Khim. 69(2), 166 (2000).

    Google Scholar 

  7. E. T. Denisov, in General Aspects of the Chemistry of Radicals, Ed. by Z. B. Alfassi (Wiley, London, 1999), p. 79.

    Google Scholar 

  8. E. T. Denisov, T. G. Denisova, and T. S. Pokidova, in Handbook of Free Radical Initiators (Wiley, Hoboken, 2003).

    Book  Google Scholar 

  9. A. F. Shestakov, E. T. Denisov, and N. S. Emel’yanova, Izv. Akad. Nauk, Ser. Khim., No. 4, 886 (2005)

  10. I. V. Aleksandrov, Teor. Eksp. Khim., No. 12, 299 (1976).

  11. NIST Standard Reference Database 19A. Positive Ion Energetics. Version 2.02 (Gaithersburg, 1994).

  12. E. S. Domalski, J. Phys. Chem. Ref. Data 2, 805 (1993).

    Article  Google Scholar 

  13. A. B. Trenwith, J. Chem. Soc. Faraday Trans. 1 71, 2405 (1975).

    Article  CAS  Google Scholar 

  14. W. Tsang, J. Chem. Phys. 40, 1498 (1964).

    Article  CAS  Google Scholar 

  15. E. A. Dorko, D. B. McGhee, C. E. Painter, et al., J. Phys. Chem. 75, 2526 (1971).

    Article  CAS  Google Scholar 

  16. D. Lewis, M. Keil, and M. Sarr, J. Am. Chem. Soc. 96, 4398 (1974).

    Article  CAS  Google Scholar 

  17. C. G. Newman, H. E. O’Neal, M. A. Ring, et al., Int. J. Chem. Kinet. 11, 1167 (1979).

    Article  CAS  Google Scholar 

  18. W. Tsang, Int. J. Chem. Kinet. 8, 173 (1976).

    Article  CAS  Google Scholar 

  19. G. G. Smith and B. L. Yates, J. Chem. Soc., 7242 (1965).

  20. R. August, I. McEwen, and R. Taylor, J. Chem. Soc., Perkin Trans. 2, No. 11, 1685 (1987).

  21. J. Gonzalez-Vazquez, A. Fernandez-Ramos, E. Martinez-Nunez, and S. A. Vazquez, J. Phys. Chem., A 107, 1389 (2003).

    Article  CAS  Google Scholar 

  22. S. D. Peterson and J. S. Francisko, J. Phys. Chem., A 106, 3106 (2002).

    Article  CAS  Google Scholar 

  23. X. F. Duan and M. Page, J. Am. Chem. Soc. 117, 5114 (1995).

    Article  CAS  Google Scholar 

  24. P. Sanchez-Anrada, I. Alkorta, and J. Elguero, J. Mol. Struct. (THEOCHEM) 544, 5 (2001).

    Article  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.7 (Gaussian, Pittsburgh, 1998).

    Google Scholar 

  26. D. Stull, E. Westrum, and G. Sinke, The Chemical Thermodynamics of Organic Compounds (Wiley, New York, 1969; Mir, Moscow, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Denisov.

Additional information

Original Russian Text © T.S. Pokidova, E.T. Denisov, A.F. Shestakov, 2009, published in Neftekhimiya, 2009, Vol. 49, No. 5, pp. 363–373.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokidova, T.S., Denisov, E.T. & Shestakov, A.F. Kinetic parameters and geometry of the transition state in the unimolecular degradation of alcohols. Pet. Chem. 49, 343–353 (2009). https://doi.org/10.1134/S0965544109050016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544109050016

Keywords

Navigation