Advertisement

Petroleum Chemistry

, Volume 48, Issue 5, pp 325–334 | Cite as

Manufacturing of lower olefins from natural gas through methanol and its derivatives (review)

  • S. N. Khadzhiev
  • N. V. KolesnichenkoEmail author
  • N. N. Ezhova
Article

Abstract

State-of-the-art processes for the manufacturing of lower olefins (mainly ethylene and propylene) from natural gas through methanol, dimethyl ether, and ethanol are surveyed. The processes involving the synthesis of dimethyl ether via the dehydration of methanol and ethanol production via methanol homologation are discussed.

Keywords

Zeolite Dimethyl Ether Petroleum Chemistry Methanol Synthesis Methanol Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Men’shchikov and M. Yu. Sinev, Katal. Prom-sti, No. 1, 25 (2005).Google Scholar
  2. 2.
    Eur. Chem. News 82, 10 (2005).Google Scholar
  3. 3.
    A. B. Avtonomov, Elektr. Stan., No. 5, 55 (2003).Google Scholar
  4. 4.
    V. S. Arutyunov and O. V. Krylov, Oxidative Transformations of Methane (Nauka, Moscow, 1998) [in Russian].Google Scholar
  5. 5.
    R. A. Sheldon, Chemicals from Synthesis Gas: Catalytic Reactions of CO and H 2 (D. Reidel, Dordrecht, 1983; Khimiya, Moscow, 1987).Google Scholar
  6. 6.
    G. Cai, Z. Liu, R. Shi, et al., Appl. Catal., A 125, 29 (1995).CrossRefGoogle Scholar
  7. 7.
    M. Stoker, Micropor. Mesopor. Mater. 29, 3 (1999).CrossRefGoogle Scholar
  8. 8.
    B. Notari, V. Fattore, and G. Manara, Dimethyl Ether (Assoreni, Milan, 1978).Google Scholar
  9. 9.
    ICIS Chem. Bus. 1, 28 (2006).Google Scholar
  10. 10.
    Chem. Eng. News 83, 18 (2005).Google Scholar
  11. 11.
    ICIS Chem. Bus. 1, 27 (2006).Google Scholar
  12. 12.
    Eur. Chem. News 79, 30 (2003).Google Scholar
  13. 13.
    C. D. Chang and A. J. Silvestri, J. Catal. 47, 249 (1977).CrossRefGoogle Scholar
  14. 14.
    C. D. Chang, C. T.-W. Chu, and R. F. Socha, J. Catal. 86, 289 (1984).CrossRefGoogle Scholar
  15. 15.
    C. D. Chang, W. H. Lang, and R. L. Smith, J. Catal. 56, 169 (1979).CrossRefGoogle Scholar
  16. 16.
    US Patent No. 4,025,576 (1977).Google Scholar
  17. 17.
    M. G. Nowden, J. J. C. Botha, and M. S. Scurrel, Chem. Ind. 46, 391 (1992).Google Scholar
  18. 18.
    US Patent No. 4,052,479 (1977).Google Scholar
  19. 19.
    US Patent No. 4,058,576 (1977).Google Scholar
  20. 20.
    US Patent No. 4,229,608 (1980).Google Scholar
  21. 21.
    US Patent No. 4,912,281 (1990).Google Scholar
  22. 22.
    D. F. A. Wunder and E. I. Leupold, Angew. Chem. 92, 125 (1980).CrossRefGoogle Scholar
  23. 23.
    E. A. Stewart, D. W Johnson, and M. D. Shannon, in Innovation in Zeolite Materials Science, Ed. by P. J. Grobet, W. J. Mortier, E. F. Vansant, and G. Schulz-Ekloff (Elsevier, Amsterdam, 1987), p. 57.Google Scholar
  24. 24.
    US Patent No. 4,172,856 (1979).Google Scholar
  25. 25.
    US Patent No. 6,506,954 (2003).Google Scholar
  26. 26.
    US Patent No. 4,434,314 (1984).Google Scholar
  27. 27.
    NO Pat. Appl. No. 872505 (1987).Google Scholar
  28. 28.
    G. Cai, Zh. Liu, R. Shi, et al., Appl. Catal., A 125, 29 (1995).CrossRefGoogle Scholar
  29. 29.
    US Patent No. 6,531,639 (2003).Google Scholar
  30. 30.
    J. Liang, H. Li, S. Zhao, et al., Appl. Catal. 64, 31 (1990).CrossRefGoogle Scholar
  31. 31.
    D. B. Luk’yanov, Kinet. Katal. 30, 216 (1989).Google Scholar
  32. 32.
    US Patent No. 3,894,104 (1975).Google Scholar
  33. 33.
    US Patent No. 4,066,714 (1978).Google Scholar
  34. 34.
    JP Appl. No. 59-219134 (1984).Google Scholar
  35. 35.
    S. Nowak, Freiberg. Forschungsh. A 763, 116 (1987).Google Scholar
  36. 36.
    L. Juan, in Zeolites, Ed. by B. Drzaj, S. Hocevar, and S. Pejovnik (Elsevier, Amsterdam, 1985), p. 611.Google Scholar
  37. 37.
    G. Cai, G. Chen, Q. Wang, et al., in Zeolites, Ed. by B. Drzaj, S. Hocevar, and S. Pejovnik (Elsevier, Amsterdam, 1985), p. 319.Google Scholar
  38. 38.
    I. Balkrishnan, B. S. Rao, S. G. Hegde, et al., J. Mol. Catal. 17, 261 (1982).CrossRefGoogle Scholar
  39. 39.
    US Patent No. 3,529,033 (1970).Google Scholar
  40. 40.
    US Patent No. 4,804,800 (1989).Google Scholar
  41. 41.
    US Patent No. 3,911,041 (1975).Google Scholar
  42. 42.
    US Patent No. 3,899,544 (1975).Google Scholar
  43. 43.
    W. W. Kaeding and S. A. Butter, J. Catal. 61, 155 (1980).CrossRefGoogle Scholar
  44. 44.
    A. M. Al-Jarallah, U. A. El-Natafy, and M. M. Abdillahi, Appl. Catal., A 154, 117 (1997).CrossRefGoogle Scholar
  45. 45.
    T. Inui, A. Miyamoto, H. Matsuda, et al., in New Developments in Zeolite Science and Technology, Ed. by Y. Murakami, A. Jijima, and J. W. Ward (Elsevier, Tokyo, 1986), p. 859.Google Scholar
  46. 46.
    T. Inui, H. Matsuda, O. Yamase, et al., J. Catal. 98, 491 (1986).CrossRefGoogle Scholar
  47. 47.
    T. Mole, G. Bett, and D. J. Seddon, J. Catal. 84, 435 (1983).CrossRefGoogle Scholar
  48. 48.
    US Patent No. 6,046,372 (2000).Google Scholar
  49. 49.
    US Patent No. 4,035,430 (1977).Google Scholar
  50. 50.
    US Patent No. 3,965,205 (1976).Google Scholar
  51. 51.
    G. Chen, J. Liang, Q. Wang, et al., in Methane Conversion, Ed. by D. M. Bibby, C. D. Chang, R. F. Howe, and S. Yurchak (Elsevier, Amsterdam, 1988), p. 201.Google Scholar
  52. 52.
    W. J. H. Dehertog and G. F. Froment, Appl. Catal. 71, 153 (1991).CrossRefGoogle Scholar
  53. 53.
    Y. Ono, E. Emai, and T. Mori, Z. Phys. Chem. Neu Folde 115, 99 (1979).Google Scholar
  54. 54.
    US Patent No. 4,440,871 (1984).Google Scholar
  55. 55.
    S. W. Kaiser, Arabian J. Sci. Eng. 10, 361 (1985).Google Scholar
  56. 56.
    J. M. O. Lewis, Methanol to Olefins Process Using Aluminophosphate Molecular Sieve Catalysts. Catalysis 1987 (Elsevier, Amsterdam, 1988).Google Scholar
  57. 57.
    Kang Misook, J. Mol. Catal., A 160, 437 (2000).CrossRefGoogle Scholar
  58. 58.
    D. R. Dubois, D. L. Obrzut, J. Liu, et al., Fuel Process. Technol. 83, 203 (2003).CrossRefGoogle Scholar
  59. 59.
    US Patent No. 5,714,662 (1998).Google Scholar
  60. 60.
    B. V. Vora, P. R. Pujado, L. W. Miller, et al., Stud. Surf. Sci. Catal. 136, 537 (2001).CrossRefGoogle Scholar
  61. 61.
    US Patent No. 6,632,971 (2003).Google Scholar
  62. 62.
    US Patent No. 6,784,330 (2004).Google Scholar
  63. 63.
    EEC Patent No. 1,479,662 (2004).Google Scholar
  64. 64.
    US Patent No. 6,872,867 (2005).Google Scholar
  65. 65.
    US Patent No. 6,717,023 (2004).Google Scholar
  66. 66.
    US Patent No. 6,737,556 (2004).Google Scholar
  67. 67.
    US Patent No. 7,034,196 (2006).Google Scholar
  68. 68.
    US Patent No. 6,441,262 (2002).Google Scholar
  69. 69.
    N. Y. Chen and W. J. Reagan, J. Catal. 50, 123 (1979).CrossRefGoogle Scholar
  70. 70.
    C. Lo, C. A. Giurumescu, R. Radhakrishnan, and B. L. Trout, Mol. Phys. 102, 281 (2004).CrossRefGoogle Scholar
  71. 71.
    J. Bandiera and C. Naccache, Appl. Catal. 69, 139 (1991).CrossRefGoogle Scholar
  72. 72.
    S. R. Blaszkowski and R. A. Van Santen, J. Am. Chem. Soc. 118, 5152 (1996).CrossRefGoogle Scholar
  73. 73.
    S. R. Blaszkowski and R. A. Van Santen, J. Am. Chem. Soc. 119, 5020 (1997).CrossRefGoogle Scholar
  74. 74.
    N. Tajima, T. Tsuneda, F. Toyama, and K. Hirao, J. Am. Chem. Soc. 120, 8222 (1998).CrossRefGoogle Scholar
  75. 75.
    N. S. Khashagul’gova, S. N. Khadzhiev, and A. A. Kubasov, Vestn. Mosk. Univ., Ser. 2: Khim. 22, 156 (1981).Google Scholar
  76. 76.
    T. R. Forester, S. T. Wong, and R. F. Howe, J. Chem. Soc., Chem. Commun., 1611 (1986).Google Scholar
  77. 77.
    W. O. Haag, R. M. Lago, and P. G. Rodewald, J. Mol. Catal. 17, 161 (1982).CrossRefGoogle Scholar
  78. 78.
    US Patent No. 4,083,388 (1978).Google Scholar
  79. 79.
    N. S. Khashagul’gova, S. N. Khadzhiev, and A. A. Kubasov, Kinet. Katal. 24, 1261 (1983).Google Scholar
  80. 80.
    US Patent No. 4,482,772 (1984).Google Scholar
  81. 81.
    I. M. Dahl and S. Kolboe, J. Catal. 149, 458 (1994).CrossRefGoogle Scholar
  82. 82.
    Y. Ono and T. Mori, J. Chem. Soc., Faraday Trans. 77, 2209 (1981).CrossRefGoogle Scholar
  83. 83.
    D. Kagi, J. Catal. 69, 242 (1981).CrossRefGoogle Scholar
  84. 84.
    J. Novakova, L. Kubelkova, K. Habersberger, and Z. Dolejsek, J. Chem. Soc., Faraday Trans. 80, 1457 (1984).CrossRefGoogle Scholar
  85. 85.
    G. J. Hutchings, F. Gottschalk, M. V. M. Hall, and R. Hunter, J. Chem. Soc., Faraday Trans. 83, 571 (1987).CrossRefGoogle Scholar
  86. 86.
    L. Kubelkova, J. Novakova, and K. Nedomova, J. Catal. 124, 441 (1990).CrossRefGoogle Scholar
  87. 87.
    T. Mole and J. A. Whiteside, J. Catal. 75, 284 (1982).CrossRefGoogle Scholar
  88. 88.
    J. E. Jackson and F. M. Bertsch, J. Am. Chem. Soc. 112, 9085 (1990).CrossRefGoogle Scholar
  89. 89.
    J. R. A. Clarke, R. Darcy, B. F. Hegarty, et al., J. Chem. Soc., Chem. Commun., 425 (1986).Google Scholar
  90. 90.
    Hydrocarbon Process., Int. Ed. 82, 128 (2003).Google Scholar
  91. 91.
    US Patent No. 7,015,369 (2006).Google Scholar
  92. 92.
    DE Patent No. 10,027,159 (2001).Google Scholar
  93. 93.
    US Patent No. 2,266,885 (2004).Google Scholar
  94. 94.
    EPC Patent No. 0,448,000 (1991).Google Scholar
  95. 95.
    DE Patent No. 19,723,363 (1998).Google Scholar
  96. 96.
    US Patent No. 6,852,897 (2002).Google Scholar
  97. 97.
    M. Rothaemel and H.-D. Holtmann, in Proceedings of DGMK Conference “Creating Value from Light Olefins-Production and Conversion”, Hamburg, 2001.Google Scholar
  98. 98.
    H. Koempel, W. Liebner, and M. Wagner, in Proceedings of Second ICIS-LOR World Olefin Conference, Amsterdam, 2003.Google Scholar
  99. 99.
    Chem. Eng. 112, 15 (2005).Google Scholar
  100. 100.
    US Patent No. 4,346,020 (1982).Google Scholar
  101. 101.
    US Patent No. 4,954,665 (1990).Google Scholar
  102. 102.
    US Patent No. 2,623,906 (1952).Google Scholar
  103. 103.
    US Patent No. 4,451,678 (1984).Google Scholar
  104. 104.
    I. Wender, Catal. Rev. 14, 97 (1979).CrossRefGoogle Scholar
  105. 105.
    US Patent No. 4,328,379 (1982).Google Scholar
  106. 106.
    US Patent No. 4,239,925 (1980).Google Scholar
  107. 107.
    US Patent No. 4,352,946 (1982).Google Scholar
  108. 108.
    US Patent No. 4,423,258 (1983).Google Scholar
  109. 109.
    US Patent No. 4,304,946 (1981).Google Scholar
  110. 110.
    US Patent No. 4,476,326 (1984).Google Scholar
  111. 111.
    US Patent No. 3,285,948 (1966).Google Scholar
  112. 112.
    US Patent No. 4,133,966 (1979).Google Scholar
  113. 113.
    US Patent No. 4,324,927 (1982).Google Scholar
  114. 114.
    US Patent No. 4,253,987 (1981).Google Scholar
  115. 115.
    US Patent No. 4,239,924 (1980).Google Scholar
  116. 116.
    US Patent No. 4,233,466 (1980).Google Scholar
  117. 117.
    US Patent No. 4,423,257 (1983).Google Scholar
  118. 118.
    US Patent No. 4,409,404 (1983).Google Scholar
  119. 119.
    US Patent No. 4,424,384 (1984).Google Scholar
  120. 120.
    US Patent No. 4,111,837 (1978).Google Scholar
  121. 121.
    K. G. Moloy and R. W. Wegman, J. Am. Chem. Soc. 114, 323 (1992).Google Scholar
  122. 122.
    K. G. Moloy and R. W. Wegman, Organometallics 8, 2883 (1989).CrossRefGoogle Scholar
  123. 123.
    M. J. Chen and J. W. Rathke, Organometallics 6, 1833 (1987).CrossRefGoogle Scholar
  124. 124.
    M. J. Chen and H. M. Feder, in Catalysis of Organic Reactions, Ed. by W. Moser (Marcel Dekker, New York, 1981), p. 273.Google Scholar
  125. 125.
    US Patent No. 4,301,312 (1981).Google Scholar
  126. 126.
    A. Ya. Rozovskii, Ross. Khim. Zh. 47(6), 53 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. N. Khadzhiev
    • 1
  • N. V. Kolesnichenko
    • 1
    Email author
  • N. N. Ezhova
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations