Skip to main content
Log in

Algorithm for Solving the Four-Wave Kinetic Equation in Problems of Wave Turbulence

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose the method for numerical solution of four-wave kinetic equations that arise in the wave turbulence (weak turbulence) theory when describing a homogeneous isotropic interaction of waves. To calculate the collision integral in the right-hand side of equation, the cubature formulas of high rate of convergence are developed, which allow for adaptation of the algorithm to the singularities of the solutions and of the integral kernels. The convergence tests in the problems of integration arising from real applications are done. To take into account the multi-scale nature of turbulence problems in our algorithm, rational approximations of the solutions and a new time marching scheme are implemented and tested. The efficiency of the developed algorithm is demonstrated by modelling the inverse cascade of Bose gas particles during the formation of a Bose–Einstein condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. L. F. Richardson, Weather Prediction by Numerical Processes (Cambridge Univ. Press, Boston, 1922).

    Google Scholar 

  2. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk. SSSR 30 (9), 301–304 (1941).

    MathSciNet  Google Scholar 

  3. A. M. Obukhov, “On the distribution of energy in the spectrum of turbulent flow,” Bull. Acad. Sci. USSR, Geog. Geophys. 5 (4), 453–466 (1941).

    Google Scholar 

  4. S. Nazarenko, Wave Turbulence (Springer, Heidelberg, 2012).

    Google Scholar 

  5. V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer, Berlin, 1992).

    Book  Google Scholar 

  6. V. E. Zakharov, S. L. Musher, and A. M. Rubenchik, “Hamiltonian approach to the description of non-linear plasma phenomena,” Phys. Rep. 129 (5), 285–366 (1985).

    Article  MathSciNet  Google Scholar 

  7. S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, “Optical turbulence: Weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation,” Physica D: Nonlinear Phenom. 57 (1–2), 96–160 (1992).

    Article  Google Scholar 

  8. Y. Zhu, B. V. Semisalov, G. Krstulovic, and S. V. Nazarenko, “Testing wave turbulence theory for the Gross–Pitaevskii system,” Phys. Rev. E 106, 014205 (2022).

  9. V. P. Krasitskii, “On the canonical transformation of the theory of weakly nonlinear waves with nondecay dispersion law,” Sov. Phys. J. Exp. Theor. Phys. 98, 1644–1655 (1990).

    Google Scholar 

  10. D. V. Semikoz and I. I. Tkachev, “Kinetics of Bose condensation,” Phys. Rev. Lett. 74 (16), 3093–3097 (1995).

    Article  Google Scholar 

  11. L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensation and Superfluidity (Oxford Univ. Press, Oxford, 2016).

    Book  Google Scholar 

  12. J. V. Maloney and A. C. Newell, Nonlinear Optics, 1st ed. (CRC, Boca Raton, 2019).

    Google Scholar 

  13. W. H. Zurek, “Cosmological experiments in superfluid helium?,” Nature 317, 505–508 (1985).

    Article  Google Scholar 

  14. V. E. Zakharov, “Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid,” Eur. J. Mech. B/Fluids 18 (3), 327–344 (1999).

    Article  MathSciNet  Google Scholar 

  15. A. Pushkarev, D. Resio, and V. Zakharov, “Weak turbulent approach to the wind-generated gravity sea waves,” Physica D 184, 29–63 (2003).

    Article  MathSciNet  Google Scholar 

  16. Y. Zhu, B. V. Semisalov, G. Krstulovic, and S. V. Nazarenko, “Direct and inverse cascades in turbulent Bose–Einstein condensates,” Phys. Rev. Lett. 130 (13), 133001 (2023).

  17. B. V. Semisalov, V. N. Grebenev, S. B. Medvedev, and S. V. Nazarenko, “Numerical analysis of a self-similar turbulent flow in Bose–Einstein condensates,” Commun. Nonlinear Sci. Numer. Simul. 102, 105903 (2021).

  18. R. Lacaze, P. Lallemand, Y. Pomeau, and S. Rica, “Dynamical formation of a Bose–Einstein condensate,” Physica D: Nonlinear Phenom. 152, 779–786 (2001).

    Article  MathSciNet  Google Scholar 

  19. C. Connaughton and Y. Pomeau, “Kinetic theory and Bose–Einstein condensation,” C. R. Phys. 5 (1), 91–106 (2004).

    Article  Google Scholar 

  20. M. A. Hossain and Md. S. Islam, “Generalized composite numerical integration rule over a polygon using Gaussian quadrature,” Dhaka Univ. J. Sci. 62 (1), 25–29 (2014).

    Article  Google Scholar 

  21. P. K. Suetin, Classical Orthogonal Polynomials, 3rd ed., revised and extended (Fizmatlit, Moscow, 2005) [in Russian].

  22. G. Szegö, Orthogonal Polynomials (Am. Math. Soc., Providence, RI, 1959).

    Google Scholar 

  23. P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed. (Academic, Boston, 1984).

    Google Scholar 

  24. L. N. Trefethen, Spectral Methods in MATLAB (SIAM, Philadelphia, 2000).

    Book  Google Scholar 

  25. K. I. Babenko, Fundamentals of Numerical Analysis (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  26. L. N. Trefethen, Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2018).

    Google Scholar 

  27. M. B. Gavrikov, Preprint No. 075, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2019).

  28. D. S. Lubinsky and P. Rabinowitz, “Rates of convergence of Gaussian quadrature for singular integrands,” Math. Comput. 43 (167), 219–242 (1984).

    Article  MathSciNet  Google Scholar 

  29. M. Mori, “An IMT-type double exponential formula for numerical integration,” Publ. RIMS Kyoto Univ. 14, 713–729 (1978).

    Article  MathSciNet  Google Scholar 

  30. B. V. Semisalov and G. A. Kuz’min, “On approximation of smooth functions with boundary-layer components,” Tr. Ur. Otd. Ross. Akad. Nauk 27, 111–124 (2021).

    MathSciNet  Google Scholar 

  31. M. Iri, S. Moriguti, and Y. Takasawa, “On a certain quadrature formula,” RIMS Kokyuroku Kyoto Univ. 91, 82–118 (1970).

    Google Scholar 

  32. V. E. Zakharov and N. Filonenko, “The energy spectrum for stochastic oscillation of a fluid’s surface,” Dokl. Akad. Nauk SSSR 170, 1292–1295 (1966).

    Google Scholar 

  33. R. Baltensperger, J.-P. Berrut, and B. Noël, “Exponential convergence of a linear rational interpolant between transformed Chebyshev points,” Math. Comput. 68, 1109–1120 (1999).

    Article  MathSciNet  Google Scholar 

  34. H. E. Salzer, “Lagrangian interpolation at the Chebyshev points \({{x}_{{n,\nu }}} = \cos (\nu \pi {\text{/}}n)\), \(\nu = O(1)n\); some unnoted advantages,” Comput. J. 15, 156–159 (1972).

    Article  MathSciNet  Google Scholar 

  35. T. W. Tee and L. N. Trefethen, “A rational spectral collocation method with adaptively transformed Chebyshev grid points,” SIAM J. Sci. Comput. 28 (5), 1798–1811 (2006).

    Article  MathSciNet  Google Scholar 

  36. J.-P. Berrut and H. D. Mittelmann, “Adaptive point shifts in rational approximation with optimized denominator,” J. Comput. Appl. Math. 164–165, 81–92 (2004).

    Article  MathSciNet  Google Scholar 

  37. H. A. Jafari-Varzaneh and S. M. Hosseini, “A new map for the Chebyshev pseudospectral solution of differential equations with large gradients,” Numer. Algorithm 69, 95–108 (2015).

    Article  MathSciNet  Google Scholar 

  38. S. V. Idimeshev, “Fractional rational approximation in initial-boundary value problems with fronts,” Vychisl. Tekhnol. 25 (2), 63–79 (2020).

    Google Scholar 

  39. W. Huang and D. M. Sloan, “The pseudospectral method for solving differential eigenvalue problems,” J. Comput. Phys. 111 (2), 399–409 (1994).

    Article  MathSciNet  Google Scholar 

  40. B. V. Semisalov, “On an approach to numerical solutions of the Dirichlet problem of an arbitrary dimension,” Sib. Zh. Vychisl. Mat. 25 (1), 77–95 (2022).

    MathSciNet  Google Scholar 

  41. S. M. Rump, “Verification methods: Rigorous results using floating-point arithmetic,” Acta Numer. 19, 287–449 (2010).

    Article  MathSciNet  Google Scholar 

  42. S. M. Rump, “INTLAB–INTerval LABoratory,” in Developments in Reliable Computing (Kluwer Academic, Dordrecht, 1999), pp. 77–104.

    Google Scholar 

  43. E. A. Biberdorf, M. A. Blinova, and N. I. Popova, “Some modifications of the method of matrix spectrum dichotomy and their applications to stability problems,” Numer. Anal. Appl. 11, 108–120 (2018).

    Article  MathSciNet  Google Scholar 

  44. A. M. Blokhin and A. S. Ibragimova, “Numerical method for 2D simulation of a silicon MESFET with a hydrodynamical model based on the maximum entropy principle,” SIAM J. Sci. Comput. 31, 2015–2046 (2009).

    Article  MathSciNet  Google Scholar 

  45. C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, “Condensation of classical nonlinear waves,” Phys. Rev. Lett. 95, 263901 (2005).

  46. N. K. Bell and S. V. Nazarenko, “Reflected wave solution of Alfvén wave turbulence,” J. Phys. A: Math. Theor. 51 (40), 405501 (2018).

  47. S. V. Nazarenko, V. N. Grebenev, S. B. Medvedev, and S. Galtier, “The focusing problem for the Leith model of turbulence: A self-similar solution of the third kind,” J. Phys. A: Math. Theor. 52 (15), 155501 (2019).

  48. O. E. Lanford, “Time evolution of large classical systems,” in Dynamical Systems, Theory and Applications, Ed. by J. Moser (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  49. Y. Deng and Z. Hani, “Full derivation of the wave kinetic equation,” Invent. Math. (2023). https://doi.org/10.1007/s00222-023-01189-2

  50. M. Escobedo and J. J. L. Velázquez, On the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation (Am. Math. Soc., Providence, RI, 2015).

    Book  Google Scholar 

  51. V. L. Vaskevich and A. I. Shcherbakov, “Convergence of successive approximations in the Cauchy problem for an integro-differential equation with quadratic nonlinearity,” Mat. Tr. 21 (2), 136–149 (2018).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (agreement no. 22-11-00287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Semisalov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semisalov, B.V., Medvedev, S.B., Nazarenko, S.V. et al. Algorithm for Solving the Four-Wave Kinetic Equation in Problems of Wave Turbulence. Comput. Math. and Math. Phys. 64, 340–361 (2024). https://doi.org/10.1134/S0965542524020118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542524020118

Keywords:

Navigation