Skip to main content
Log in

Gaps in the Spectrum of Thin Waveguides with Periodically Locally Deformed Walls

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The structures of quantum and acoustic waveguides obtained by joining a periodic family of small knots to a thin cylinder are examined. Asymptotic expansions of eigenvalues of a model problem in the periodicity cell are obtained, which are used to derive asymptotic formulas for the disposition and sizes of the gaps in the spectra of the corresponding Dirichlet and Neumann problems for the Laplace operator. Geometric and integral characteristics of the waveguides are found that ensure the opening of several spectral gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. P. Exner and H. Kovarîk, Quantum Waveguides (Springer, Cham, 2015).

    Book  Google Scholar 

  2. R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves (Macmillan, New York, 1971).

    Google Scholar 

  3. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Nauka, Moscow, 1973; Springer-Verlag, New York, 1985).

  4. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications (Springer-Verlag, Berlin, 1972).

    Book  Google Scholar 

  5. M. Sh. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space (Leningrad. Gos. Univ., Leningrad, 1980; Reidel, Dordrecht, 1987).

  6. M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic, New York, 1980), Vol. 3.

    Google Scholar 

  7. M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators,” Proc. Steklov Inst. Math. 171 (2), 1–121 (1987).

    MathSciNet  Google Scholar 

  8. P. Kuchment, Floquet Theory for Partial Differential Equations (Birkhäuser, Basel, 1993).

    Book  Google Scholar 

  9. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, Berlin, 1994).

    Book  Google Scholar 

  10. I. M. Gel’fand, “Eigenfunction expansion for an equation with periodic coefficients,” Dokl. Akad. Nauk SSSR 73, 1117–1120 (1950).

    Google Scholar 

  11. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, 1966).

    Book  Google Scholar 

  12. V. Maz’ya, S. Nazarov, and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains (Birkhäuser, Basel, 2000), Vol. 1.

    Book  Google Scholar 

  13. S. A. Nazarov, “Structure of solutions of elliptic boundary value problems in thin domains,” Vestn. Leningr. Univ. Math. 15 (2), 99–104 (1983).

  14. D. Grieser, “Spectra of graph neighborhoods and scattering,” Proc. London Math. Soc. 97 (3), 718–752 (2008).

    Article  MathSciNet  Google Scholar 

  15. S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes,” Russ. Math. Surv. 54 (5), 947–1014 (1999).

    Article  Google Scholar 

  16. S. A. Nazarov, “On the one-dimensional asymptotic models of thin Neumann lattices,” Sib. Math. J. 64 (2), 356–373 (2023).

    Article  MathSciNet  Google Scholar 

  17. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics (Periodical Service, 1957).

    Google Scholar 

  18. D. Gómez, S. A. Nazarov, R. Orive-Illera, and M.-E. Pérez-Martínez, “Remark on justification of asymptotics of spectra of cylindrical waveguides with periodic singular perturbations of boundary and coefficients,” J. Math. Sci. 257 (5), 597–623 (2021).

    Article  MathSciNet  Google Scholar 

  19. D. Gómez, S. A. Nazarov, R. Orive-Illera, and M.-E. Pérez-Martínez, “Spectral gaps in a double-periodic perforated Neumann waveguide,” Asymptotic Anal. 131, 385–441 (2023).

    Article  MathSciNet  Google Scholar 

  20. S. A. Nazarov, Asymptotic Theory of Plates and Rods: Dimension Reduction and Integral Estimates (Nauchnaya Kniga, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  21. G. Panasenko, Multi-Scale Modelling for Structures and Composites (Springer, Dordrecht, 2005).

    Google Scholar 

  22. O. Post, Spectral Analysis on Graph-Like Spaces (Springer, Heidelberg, 2012).

    Book  Google Scholar 

  23. M. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964).

    Google Scholar 

  24. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Nauka, Moscow, 1989; Am. Math. Soc., Providence, R.I., 1992).

  25. S. A. Nazarov, “Opening of a gap in the continuous spectrum of a periodically perturbed waveguide,” Math. Notes 87 (5–6), 738–756 (2010).

    Article  MathSciNet  Google Scholar 

  26. S. A. Nazarov, “Asymptotics of spectral gaps in a regularly perturbed periodic waveguide,” Vestn. S.-Peterb. Univ. Math. 46 (2), 89–97 (2013).

  27. D. I. Borisov and K. V. Pankrashkin, “Gap opening and split band edges in waveguides coupled by a periodic system of small windows,” Math. Notes 93 (5), 660–675 (2013).

    Article  MathSciNet  Google Scholar 

  28. M. I. Vishik and L. A. Ljusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter,” Am. Math. Soc. Transl. 20 (2), 239–364 (1962).

    MathSciNet  Google Scholar 

  29. D. S. Jones, “The eigenvalues of \({{\nabla }^{2}}u + \lambda u = 0\) when the boundary conditions are given on semi-infinite domains,” Proc. Cambridge Phil. Soc. 49, 668–684 (1953).

    Article  ADS  Google Scholar 

  30. S. Molchanov and B. Vainberg, “Scattering solutions in networks of thin fibers: Small diameter asymptotics,” Commun. Math. Phys. 273, 533–559 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  31. S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides,” Izv. Math. 84 (6), 1105–1160 (2020).

    Article  MathSciNet  Google Scholar 

  32. K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions,” J. Math. Anal. Appl. 449, 907–925 (2017).

    Article  MathSciNet  Google Scholar 

  33. F. L. Bakharev and S. A. Nazarov, “Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides,” St. Petersburg Math. J. 32 (6), 955–973 (2021).

    Article  MathSciNet  Google Scholar 

  34. D. V. Evans, M. Levitin, and D. Vasil’ev, “Existence theorems for trapped modes,” J. Fluid Mech. 261, 21–31 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  35. S. A. Nazarov, “Waveguide with double threshold resonance at a simple threshold,” Sb. Math. 211 (8), 1080–1126 (2020).

    Article  MathSciNet  Google Scholar 

  36. A. I. Korolkov, S. A. Nazarov, and A. V. Shanin, “Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves,” Z. Angew. Math. Mech. 96, 1245–1260 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-11-00046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Gaps in the Spectrum of Thin Waveguides with Periodically Locally Deformed Walls. Comput. Math. and Math. Phys. 64, 99–117 (2024). https://doi.org/10.1134/S0965542524010111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542524010111

Keywords:

Navigation