Skip to main content
Log in

Numerical Analysis of the Blow-Up of One-Dimensional Polymer Fluid Flow with a Front

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

One-dimensional flows of an incompressible viscoelastic polymer fluid that are qualitatively similar to the solutions of Burgers’ equation are described on the basis of mesoscopic approach for the first time. The corresponding initial boundary-value problem is posed for the system of quasilinear differential equations. The numerical algorithm for solving it is designed and verified. The algorithm uses the explicit fifth-order scheme to approximate unknown functions with respect to time variable and the rational barycentric interpolations with respect to space variable. A method for localization of singular points of the solution in the complex plain and for adaptation of the spatial grid to them is implemented using the Chebyshev-Padé approximations. Two regimes of evolution of the solution to the problem are discovered and characterized while using the algorithm: regime 1—a smooth solution exists in a sufficiently large time interval (the singular point moves parallel to the real axis in the complex plane); regime 2—the smooth solution blows up at the beginning of evolution (the singular point reaches the segment of the real axis where the problem is posed). We study the influence of the rheological parameters of fluid on the realizability of these regimes and on the length of time interval where the smooth solution exists. The obtained results are important for the analysis of laminar-turbulent transitions in viscoelastic polymer continua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. Nourdine, L. Flandin, N. Albérola, L. Perrin, E. Planès, A. Hiltner, and E. Baer, “Extrusion of a nano-ordered active layer for organic photovoltaic cells,” Sustainable Energy Fuels, No. 9, 2016–2027 (2017).

  2. M. Orrill and S. LeBlanc, “Printed thermoelectric materials and devices: Fabrication techniques, advantages and challenges,” J. Appl. Polym. Sci. 134, 44256 (2017).

    Article  Google Scholar 

  3. W. Hwang, G. Xin, M. Cho, S. M. Cho, and H. Chae, “Electrospray deposition of polymer thin films for organic light-emitting diodes,” Nanoscale Res. Lett. 7, 52 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. S. S. Datta, A. M. Ardekani, P. E. Arratia, A. N. Beris, I. Bischofberger, G. H. McKinley, J. G. Eggers, J. E. López-Aguilar, S. M. Fielding, A. Frishman, M. D. Graham, J. S. Guasto, S. J. Haward, A. Q. Shen, S. Hormozi, A. Morozov, R. J. Poole, V. Shankar, E. S. G. Shaqfeh, H. Stark, V. Steinberg, G. Subramanian, and H. A. Stone, “Perspectives on viscoelastic flow instabilities and elastic turbulence,” Phys. Rev. Fluids 7, 080701 (2022).

  5. G. H. McKinley, P. Pakdel, and A. Oztekin, “Rheological and geometric scaling of purely elastic flow instabilities,” J. Non-Newtonian Fluid Mech. 67, 19–47 (1996).

    Article  CAS  Google Scholar 

  6. M. Khalid, V. Shankar, and G. Subramanian, “Continuous pathway between the elasto-inertial and elastic turbulent states in viscoelastic channel flow,” Phys. Rev. Lett. 127, 134502 (2021).

  7. J. Page, Y. Dubief, and R. R. Kerswell, “Exact traveling wave solutions in viscoelastic channel flow,” Phys. Rev. Lett. 125, 154501 (2020).

  8. G. H. Choueiri, J. M. Lopez, A. Varshney, S. Sankar, and B. Hof, “Experimental observation of the origin and structure of elasto-inertial turbulence,” Proc. Natl. Acad. Sci. U.S.A. 118 (45), e2102350118 (2021). https://doi.org/10.1073/pnas.2102350118

  9. B. Chandra, V. Shankar, and D. Das, “Onset of transition in the flow of polymer solutions through microtubes,” J. Fluid Mech. 844, 1052–1083 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. P. Garg, I. Chaudhary, M. Khalid, V. Shankar, and G. Subramanian, “Viscoelastic pipe flow is linearly unstable,” Phys. Rev. Lett. 121, 024502 (2018).

  11. I. Chaudhary, P. Garg, G. Subramanian, and V. Shankar, “Linear instability of viscoelastic pipe flow,” J. Fluid Mech. 908, A11 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. V. N. Pokrovskii, Y. A. Altukhov, and G. V. Pyshnograi, “The mesoscopic approach to the dynamics of polymer melts: Consequences for the constitutive equation,” J. Non-Newtonian Fluid Mech. 76 (1–3), 153–181 (1998).

    Article  CAS  Google Scholar 

  13. Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, and K. B. Koshelev, Introduction to the Mesoscopic Theory of Flowing Polymer Systems (Altaisk. Gos. Ped. Akad., Barnaul, 2012) [in Russian].

    Google Scholar 

  14. J. M. Burgers, “Application of a model system to illustrate some points of the statistical theory of free turbulence,” Proc. Acad. Sci. Amsterdam 43, 2–12 (1940).

    MathSciNet  Google Scholar 

  15. Y. C. Hon and X. Z. Mao, “An efficient numerical scheme for Burgers’ equation,” Appl. Math. Comput. 95, 37–50 (1998).

    MathSciNet  Google Scholar 

  16. B. V. Semisalov, V. A. Belyaev, L. S. Bryndin, A. G. Gorynin, A. M. Blokhin, S. K. Golushko, and V. P. Shapeev, “Verified simulation of the stationary polymer fluid flows in the channel with elliptical cross-section,” Appl. Math. Comput. 430, 127294 (2022).

  17. C. Sulem, P.-L. Sulem, and H. Frish, “Tracing complex singularities with spectral methods,” J. Comput. Phys. 50, 138–161 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  18. J. A. C. Weideman, “Computing the dynamics of complex singularities of nonlinear PDEs,” SIAM J. Appl. Dyn. Syst. 2 (2), 171–186 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. E. Caflisch, F. Gargano, M. Sammartino, and V. Sciacca, “Complex singularities and PDEs,” Riv. Math. Univ. Parma 6 (1), 69–133 (2015).

    MathSciNet  Google Scholar 

  20. J. A. C. Weideman, “Dynamics of complex singularities of nonlinear PDEs,” in Recent Advances in Industrial and Applied Mathematics, Ed. by T. Ch. Rebollo, R. Donat, and I. Higueras (Springer, Cham, 2022), pp. 227–247.

    Google Scholar 

  21. H. R. Stahl, “Poles and zeros of best rational approximants of |x|,” Constr. Approx. 10, 469–522 (1994).

    Article  MathSciNet  Google Scholar 

  22. H. R. Stahl, “Best uniform rational approximation of x α on [0, 1],” Acta Math. 190, 241–306 (2003).

    Article  MathSciNet  Google Scholar 

  23. S. P. Suetin, “On the convergence of rational approximations to polynomial expansions in domains of meromorphy of a given function,” Math. USSR Sb. 34 (3), 367–381 (1978).

    Article  Google Scholar 

  24. E. A. Rakhmanov and S. P. Suetin, “Chebyshev–Padé approximants for multivalued functions,” Tr. Mosk. Mat. O–va 83 (2), 101–126 (2022).

    Google Scholar 

  25. L. N. Trefethen, Y. Nakatsukasa, and J. A. C. Weideman, “Exponential node clustering at singularities for rational approximation, quadrature, and PDEs,” Numer. Math. 147, 227–254 (2021).

    Article  MathSciNet  PubMed  Google Scholar 

  26. A. Gopal and L. N. Trefethen, “Rational minimax approximation via adaptive barycentric representations,” SIAM J. Sci. Comput. 40 (4), A2427–A2455 (2018).

    Article  MathSciNet  Google Scholar 

  27. T. W. Tee and L. N. Trefethen, “A rational spectral collocation method with adaptively transformed Chebyshev grid points,” SIAM J. Sci. Comput. 28 (5), 1798–1811 (2006).

    Article  MathSciNet  Google Scholar 

  28. S. V. Idimeshev, “Fractional rational approximation in initial-boundary value problems with fronts,” Vychisl. Tekhnol. 25 (2), 63–79 (2020).

    Google Scholar 

  29. R. Baltensperger, J.-P. Berrut, and B. Noël, “Exponential convergence of a linear rational interpolant between transformed Chebyshev points,” Math. Comput. 68 (227), 1109–1120 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  30. H. A. Jafari-Varzaneh and S. M. Hosseini, “A new map for the Chebyshev pseudospectral solution of differential equations with large gradients,” Numer. Algorithms 69, 95–108 (2015).

    Article  MathSciNet  Google Scholar 

  31. B. V. Semisalov and G. A. Kuz’min, “On approximation of smooth functions with boundary-layer components,” Tr. Ur. Otd. Ross. Akad. Nauk 27, 111–124 (2021).

    MathSciNet  Google Scholar 

  32. B. V. Semisalov, “Application of fractional rational interpolation for solving boundary value problems with singularities,” Vestn. Yuzhno-Ural. Gos. Univ. Ser.: Mat. Model. Program. 15 (4), 5–19 (2022).

    Google Scholar 

  33. A. M. Blokhin and B. V. Semisalov, “A stationary flow of an incompressible viscoelastic fluid in a channel with elliptic cross section,” J. Appl. Ind. Math. 9 (1), 18–26 (2015).

    Article  MathSciNet  Google Scholar 

  34. H. E. Salzer, “Lagrangian interpolation at the Chebyshev points \({{x}_{{n,\nu }}} = \cos (\nu \pi ){\text{/}}n,\nu = O(1)n\); some unnoted advantages,” Comput. J. 15 (2), 156–159 (1972).

    Article  MathSciNet  Google Scholar 

  35. N. J. Higham, “The numerical stability of barycentric Lagrange interpolation,” IMA J. Numer. Anal. 24 (4), 547–556 (2004).

    Article  MathSciNet  Google Scholar 

  36. C. Schneider and W. Werner, “Some new aspects of rational interpolation,” Math. Comput. 47 (175), 285–299 (1986).

    Article  MathSciNet  Google Scholar 

  37. J. R. Dormand and P. J. Prince, “A family of embedded Runge–Kutta formulae,” J. Comput. Appl. Math 6 (1), 19–26 (1980).

    Article  MathSciNet  Google Scholar 

  38. G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants (Addison-Wesley, Reading, Mass., 1981).

    Google Scholar 

  39. L. N. Trefethen, Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, agreement no. 23-21-00499.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. S. Bryndin, B. V. Semisalov, V. A. Beliaev or V. P. Shapeev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryndin, L.S., Semisalov, B.V., Beliaev, V.A. et al. Numerical Analysis of the Blow-Up of One-Dimensional Polymer Fluid Flow with a Front. Comput. Math. and Math. Phys. 64, 151–165 (2024). https://doi.org/10.1134/S0965542524010068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542524010068

Keywords:

Navigation