Skip to main content
Log in

Actual Accuracy of Linear Schemes of High-Order Approximation in Gasdynamic Simulations

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A new test problem for one-dimensional gas dynamics equations is considered. Initial data in the problem is a periodic smooth wave. Shock waves are formed in the gas flow over a finite time. The convergence under mesh refinement is analyzed for two third-order accurate linear schemes, namely, a bicompact scheme and Rusanov’s scheme. It is demonstrated that both schemes have only the first order of integral convergence in the shock influence area. However, when applied to equations of isentropic gas dynamics, the schemes converge with at least the second order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. J. A. Ekaterinaris, “High-order accurate, low numerical diffusion methods for aerodynamics,” Prog. Aerosp. Sci. 41, 192–300 (2005).

    Article  Google Scholar 

  2. A. S. Kholodov and Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations,” Comput. Math. Math. Phys. 46 (9), 1560–1588 (2006).

    Article  MathSciNet  Google Scholar 

  3. S. K. Godunov, “Difference method for computing discontinuous solutions of fluid dynamics equations,” Mat. Sb. 47 (3), 271–306 (1959).

    MathSciNet  Google Scholar 

  4. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  5. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009).

    Book  Google Scholar 

  6. B. Van Leer, “Toward the ultimate conservative difference scheme: V. A second-order sequel to Godunov’s method,” J. Comput. Phys. 32 (1), 101–136 (1979).

    Article  ADS  Google Scholar 

  7. A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys. 49 (3), 357–393 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  8. B. Cockburn and C.-W. Shu, “Nonlinearly stable compact schemes for shock calculations,” SIAM J. Numer. Anal. 31 (3), 607–627 (1994).

    Article  MathSciNet  Google Scholar 

  9. A. Harten and S. Osher, “Uniformly high-order accurate nonoscillatory schemes,” SIAM J. Numer. Anal. 24 (2), 279–309 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  10. X.-D. Liu, S. Osher, and T. Chan, “Weighted essentially nonoscillatory schemes,” J. Comput. Phys. 115 (1), 200–212 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. S. Jiang and C. W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys. 126 (1), 202–228 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  12. B. Gustafsson and P. Olsson, “Fourth-order difference methods for hyperbolic IBVPs,” J. Comput. Phys. 117 (2), 300–317 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  13. H. C. Yee, N. D. Sandham, and M. J. Djomehri, “Low-dissipative high-order shock-capturing methods using characteristic-based filters,” J. Comput. Phys. 150 (1), 199–238 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. J. A. Ekaterinaris, “Implicit, high-resolution, compact schemes for gas dynamics and aeroacoustics,” J. Comput. Phys. 156 (2), 272–299 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. I. V. Popov and I. V. Fryazinov, “Finite-difference method for solving gas dynamics equations using adaptive artificial viscosity,” Math. Models Comput. Simul. 1 (4), 493–502 (2009).

    Article  Google Scholar 

  16. J. L. Guermond, R. Pasquetti, and B. Popov, “Entropy viscosity method for nonlinear conservation laws,” J. Comput. Phys. 230 (11), 4248–4267 (2011).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. A. Kurganov and Y. Liu, “New adaptive artificial viscosity method for hyperbolic systems of conservation laws,” J. Comput. Phys. 231 (24), 8114–8132 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  18. V. V. Ostapenko, “Convergence of finite-difference schemes behind a shock front,” Comput. Math. Math. Phys. 37 (10), 1161–1172 (1997).

    MathSciNet  Google Scholar 

  19. J. Casper and M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound,” SIAM J. Sci. Comput. 19 (1), 813–828 (1998).

    Article  MathSciNet  Google Scholar 

  20. B. Engquist and B. Sjögreen, “The convergence rate of finite difference schemes in the presence of shocks,” SIAM J. Numer. Anal. 35, 2464–2485 (1998).

    Article  MathSciNet  Google Scholar 

  21. V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves,” Comput. Math. Math. Phys. 40 (12), 1784–1800 (2000).

    MathSciNet  Google Scholar 

  22. O. A. Kovyrkina and V. V. Ostapenko, “On the convergence of shock-capturing difference schemes,” Dokl. Math. 82 (1), 599–603 (2010).

    Article  MathSciNet  Google Scholar 

  23. O. A. Kovyrkina and V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes,” Math. Models Comput. Simul. 6 (2), 183–191 (2014).

    Article  MathSciNet  Google Scholar 

  24. N. A. Mikhailov, “The convergence order of WENO schemes behind a shock front,” Math. Models Comput. Simul. 7, 467–474 (2015).

  25. M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, and V. F. Tishkin, “On the accuracy of the discontinuous Galerkin method in calculation of shock waves,” Comput. Math. Math. Phys. 58 (8), 1344–1353 (2018).

    Article  MathSciNet  Google Scholar 

  26. O. A. Kovyrkina and V. V. Ostapenko, “Monotonicity and accuracy of the CABARET scheme as applied to computation of generalized solutions with shock waves,” Vychisl. Tekhnol. 23 (2), 37–54 (2018).

    Google Scholar 

  27. O. A. Kovyrkina and V. V. Ostapenko, “Accuracy of MUSCL-type schemes in shock wave calculations,” Dokl. Math. 101 (3), 209–213 (2020).

    Article  MathSciNet  Google Scholar 

  28. M. D. Bragin and B. V. Rogov, “On the accuracy of bicompact schemes as applied to computation of unsteady shock waves,” Comput. Math. Math. Phys. 60 (5), 1344–1353 (2020).

    Article  MathSciNet  Google Scholar 

  29. O. A. Kovyrkina and V. V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy,” Dokl. Math. 97 (1), 77–81 (2018).

    Article  MathSciNet  Google Scholar 

  30. N. A. Zyuzina, O. A. Kovyrkina, and V. V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence,” Dokl. Math. 98 (2), 506–510 (2018).

    Article  MathSciNet  Google Scholar 

  31. M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, and V. F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas,” Dokl. Math. 100 (3), 519–523 (2019).

    Article  MathSciNet  Google Scholar 

  32. M. D. Bragin and B. V. Rogov, “Combined monotone bicompact scheme of higher order accuracy in domains of influence of nonstationary shock waves,” Dokl. Math. 101 (3), 239–243 (2020).

    Article  MathSciNet  Google Scholar 

  33. M. N. Mikhailovskaya and B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations,” Comput. Math. Math. Phys. 52 (4), 578–600 (2012).

    Article  MathSciNet  Google Scholar 

  34. M. D. Bragin and B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations,” Appl. Numer. Math. 151, 229–245 (2020).

    Article  MathSciNet  Google Scholar 

  35. V. V. Rusanov, “Third-order accurate shock-capturing schemes for computing discontinuous solutions,” Dokl. Akad. Nauk SSSR 180 (6), 1303–1305 (1968).

    MathSciNet  Google Scholar 

  36. S. Z. Burstein and A. A. Mirin, “Third order difference methods for hyperbolic equations,” J. Comput. Phys. 5 (3), 547–571 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  37. R. Alexander, “Diagonally implicit Runge–Kutta methods for stiff O.D.E.'s,” SIAM J. Numer. Anal. 14 (6), 1006–1021 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  38. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1978; Am. Math. Soc., Providence, 1983).

Download references

Funding

This work was supported by the Moscow Center of Fundamental and Applied Mathematics, agreement no. 075-15-2022-283 with the Ministry of Science and Higher Education of the Russian Federation (Section 4) and by the Russian Science Foundation, project no. 22-11-00060 (Section 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Bragin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by I. Ruzanova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, M.D. Actual Accuracy of Linear Schemes of High-Order Approximation in Gasdynamic Simulations. Comput. Math. and Math. Phys. 64, 138–150 (2024). https://doi.org/10.1134/S0965542524010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542524010044

Keywords:

Navigation