Skip to main content
Log in

A Fast Single-Pass Method for Solving the Generalized Eikonal Equation in a Moving Medium

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a fast method for approximating the solution to the generalized eikonal equation in a moving medium. Our approach consists of the following two steps. First, we convert the generalized eikonal equation in a moving medium into a Hamilton–Jacobi–Bellman equation of anisotropic eikonal type for an anisotropic minimum-time control problem. Second, we modify the Neighbor–Gradient Single-pass method (NGSPM developed by Ho et al.), so that it not only suits the converted Hamilton–Jacobi–Bellman equation but also can be faster than original NGSPM. In the case of that Mach number is not comparable than 1, we compare our method and Characteristic Fast Marching Method (CFMM developed by Dahiya) via several numerical examples to show that our method is faster and more accurate than CFMM. We also compare the numerical solutions obtained from our method with the solutions obtained using the ray theory to show that our method captures the viscosity solution accurately even when the Mach number is comparable to 1. We also apply our method to 3D example to show that our method captures the viscosity solution accurately in 3D cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. G. S. Heller, “Propagation of acoustic discontinuities in an inhomogeneous moving liquid medium,” J. Acoust. Soc. Am. 25, 950–951 (1953).

    Article  MathSciNet  Google Scholar 

  2. A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (Springer, Cham, 1989).

    Google Scholar 

  3. A. Le Pichon, E. Blanc, and A. Hauchecorne, Infrared Monitoring for Atmospheric Studies (Springer, New York, 2010).

    Google Scholar 

  4. R. Blumrich, F. Coulouvrat, and D. Heimann, “Meteorologically induced variability of sonic boom characteristics of supersonic aircraft in cruising flight,” J. Acoust. Soc. Am. 118, 707–722 (2005).

    Article  Google Scholar 

  5. M. G. Crandall and P. L. Lions, “Viscosity solutions of Hamilton–Jacobi equations,” Trans. Am. Math. Soc. 277, 1–42 (1983).

    Article  MathSciNet  Google Scholar 

  6. C. Y. Kao, S. Osher, and Y. Tsai, “Fast sweeping methods for static Hamilton–Jacobi equations,” SIAM J. Numer. Anal. 42 (6), 2004–2005 (2005).

    Article  MathSciNet  Google Scholar 

  7. C. Y. Kao, S. Osher, J. Qian, “Lax–Friedrichs sweeping scheme for static-Hamilton–Jacobi equations,” J. Comput. Phys. 196, 367–391 (2004).

    Article  MathSciNet  Google Scholar 

  8. Y. Tsai, L. Cheng, S. Osher, and H. Zhao, “Fast sweeping algorithms for a class of Hamilton–Jacobi equations,” SIAM J. Numer. Anal. 41, 673–694 (2004).

    Article  MathSciNet  Google Scholar 

  9. J. Qian, Y. T. Zhang, and H. Zhao, “A fast sweeping method for static convex Hamilton–Jacobi equations,” J. Sci. Comput. 31, 237–271 (2007).

    Article  MathSciNet  Google Scholar 

  10. H. Zhao, “A fast sweeping method for eikonal equations,” Math. Comput. 74, 603–627 (2005).

    Article  MathSciNet  Google Scholar 

  11. J. Qian, Y. Zhang, and H. Zhao, “Fast sweeping methods for eikonal equations on triangulated meshes,” SIAM J. Numer. Anal. 45, 83–107 (2007).

    Article  MathSciNet  Google Scholar 

  12. J. A. Sethian and A. Vladmirsky, “Ordered upwind methods for static Hamilton–Jacobi equations: Theory and algorithms,” SIAM J. Numer. Anal. 41 (1), 323–363 (2003).

    Article  MathSciNet  Google Scholar 

  13. J. A. Sethian and A. Vladmirsky, “Ordered upwind methods for static Hamilton–Jacobi equations,” Proc. Natl. Acad. Sci. 98 (20), 11069–11074 (2001).

    Article  MathSciNet  Google Scholar 

  14. J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,” IEEE Trans. Autom. Control 40, 1528–1538 (1995).

    Article  MathSciNet  Google Scholar 

  15. M. Falcone and R. Ferretti, “Semi-Lagrangian approximation schemes for linear and Hamilton–Jacobi equations,” SIAM J. Numer. Anal. 41, 673–694 (2014).

    Google Scholar 

  16. K. Alton, “Dijkstra-like ordered upwind methods for solving static Hamilton–Jacobi equations,” PhD Thesis (Univ. of British Columbia, Vancouver, 2010).

  17. E. Cristiani, “A fast marching method for Hamilton–Jacobi equations modeling monotone front propagations,” J. Sci. Comput. 39 (2), 189–205 (2009).

    Article  MathSciNet  Google Scholar 

  18. Y. Wang, T. Nemeth, and R. T. Langan, “An expanding-wavefront method for solving the eikonal equations in general anisotropic media,” Geophysics 71 (5), 129–135 (2006).

    Article  Google Scholar 

  19. D. Dahiya, S. Baskar, and F. Coulouvrat, “Characteristic fast marching method for monotonically propagating fronts in a moving medium,” SIAM J. Sci. Comput. 35 (4), 1880–1902 (2013).

    Article  MathSciNet  Google Scholar 

  20. D. Dahiya and S. Baskar, “Characteristic fast marching method on triangular grids for the generalized eikonal equation in moving media,” Wave Motion 59, 81–93 (2015).

    Article  MathSciNet  Google Scholar 

  21. R. Glowinski, S. Leung, and J. Qian, “Operator-splitting based fast sweeping methods for isotropic wave propagation in a moving fluid,” SIAM J. Sci. Comput. 38 (2), A1195–A1223 (2016).

    Article  MathSciNet  Google Scholar 

  22. M. Ho, J. Ri, and S. Kim, “Improved characteristic fast marching method for the generalized eikonal equation in a moving medium,” J. Sci. Comput. 81 (3), 2484–2502 (2019).

    Article  MathSciNet  Google Scholar 

  23. S. Cacace, E. Cristiani, and M. Falcone, “Can local single-pass methods solve any stationary Hamilton–Jacobi–Bellman equation?,” SIAM J. Sci. Comput. 36, A570–A587 (2014).

    Article  MathSciNet  Google Scholar 

  24. E. Cristiani and M. Falcone, “Fast semi-Lagrangian schemes for the eikonal equation and applications,” SIAM J. Numer. Anal. 45 (5), 1979–2011 (2007).

    Article  MathSciNet  Google Scholar 

  25. M. Ho, J. Pak, S. Jo, and J. Kim, “Neighbor-gradient single-pass method for solving anisotropic eikonal equation,” J. Sci. Comput. 91 (2), 33 (2022).

    Article  MathSciNet  Google Scholar 

  26. M. Falcone, “The minimum time problem and its applications to front propagation,” in Motion by Mean Curvature and Related Topics, Ed. by G. Buttazzo and A. Visintin (Walter de Gruyter, Berlin, 1994).

    Google Scholar 

  27. M. Falcone and R. Ferretti, “Discrete time high-order schemes for viscosity solutions of Hamilton–Jacobi–Bellman equations,” Numer. Math. 67, 315–344 (1994).

    Article  MathSciNet  Google Scholar 

  28. W. W. Symes and J. Qian, “A slowness matching Eulerian method for multivalued solutions of eikonal equations,” J. Sci. Comput. 19, 501–525 (2003).

    Article  MathSciNet  Google Scholar 

  29. E. T. Kornhauser, “Ray theory for moving fluids,” SIAM J. Numer. Anal. 45 (5), 1979–2011 (2007).

    MathSciNet  Google Scholar 

  30. J. Mirebeau, “Riemannian fast-marching on Cartesian grids, using Voronoi’s first reduction of quadratic forms,” J. Acoust. Soc. Am. 25, 945–949 (1953).

    Google Scholar 

  31. E. Cristiani and M. Falcone, “Fast semi-Lagrangian schemes for the eikonal equation and applications,” SIAM J. Numer. Anal. 57 (6), 2608–2655 (2019).

    MathSciNet  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ho.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

APPENDIX

APPENDIX

Lemma 1. Consider the function \(g:\Omega \times {{S}_{1}} \to {{R}^{2}},\) \(c:\Omega \times {{S}_{1}} \to {{S}_{1}}\) defined in 2.2.

Then \(\left\| {g{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}}} \right\| = F({\mathbf{x}})\) and for every \(x \in \Omega ,\) \({{c}_{x}}: = c{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}}\), is one to one mapping from \({{S}_{1}}\) to \({{S}_{1}}\) and it’s inverse mapping is

$$c_{x}^{{ - 1}}:{{S}_{1}} \to {{S}_{1}},$$
$${\mathbf{a}} \mapsto \frac{{F({\mathbf{x}}){\mathbf{a}} - {\mathbf{v}}({\mathbf{x}})}}{{\left\| {F({\mathbf{x}}){\mathbf{a}} - {\mathbf{v}}({\mathbf{x}})} \right\|}}.$$

Proof. Let us prove that \(\left\| {g{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}}} \right\| = F({\mathbf{x}})\).

We denote

$$l: = \left( {{\mathbf{v}}(x) \cdot {\mathbf{a}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{\mathbf{v}}}^{2}}({\mathbf{x}}) - {{{({\mathbf{v}}({\mathbf{x}}) \cdot {\mathbf{a}})}}^{2}})} } \right) = \left( {\left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha + \sqrt {{{F}^{2}}({\mathbf{x}}) - {{{({\kern 1pt} \left| {{\mathbf{v}}({\mathbf{x}})} \right|\sin \alpha )}}^{2}}} } \right),$$

where \(\alpha \) is the angle between \({\mathbf{v}}\) and \({\mathbf{a}}\).

By the definition of \(g\), we obtain that \(g({\mathbf{x}}{\mathbf{,\hat {a}}}) = l{\mathbf{\hat {a}}} + {\mathbf{v}}({\mathbf{x}})\) and thus it is clear that \(g({\mathbf{x}}{\mathbf{,\hat {a}}}) - {\mathbf{v}}({\mathbf{x}}) = {\mathbf{a}}{\kern 1pt} '\).

Using the second cosine formula, we can get

$$\left\| {g({\mathbf{x}},{\mathbf{\hat {a}}})} \right\| = \sqrt {{{{\left| {{\mathbf{v}}({\mathbf{x}})} \right|}}^{2}} + {{l}^{2}} - 2l\left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha } = :\sqrt D .$$

Then the right-hand side of the above equality is expanded as follows;

$$\begin{gathered} D = {{\left| {{\mathbf{v}}({\mathbf{x}})} \right|}^{2}} + {{l}^{2}} - 2l\left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha = {{\left| {{\mathbf{v}}({\mathbf{x}})} \right|}^{2}} + {{({\kern 1pt} \left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha )}^{2}} \\ + \;F{{{\mathbf{(x)}}}^{2}} - {{(\left| {{\mathbf{v}}({\mathbf{x}})} \right|\sin \alpha )}^{2}} + 2\left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha \sqrt {F{{{({\mathbf{x}})}}^{2}} - {{{({\kern 1pt} \left| {{\mathbf{v}}({\mathbf{x}})} \right|\sin \alpha )}}^{2}}} - 2l\left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha \\ = F{{({\mathbf{x}})}^{2}} + 2(\left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha {{)}^{2}} + 2\left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha \sqrt {F{{{({\mathbf{x}})}}^{2}} - {{{({\kern 1pt} \left| {{\mathbf{v}}({\mathbf{x}})} \right|\sin \alpha )}}^{2}}} - 2l\left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha \\ = F{{({\mathbf{x}})}^{2}} + 2\left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha ({\kern 1pt} \left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha + \sqrt {F{{{({\mathbf{x}})}}^{2}} - {{{({\kern 1pt} \left| {{\mathbf{v}}({\mathbf{x}})} \right|\sin \alpha )}}^{2}}} ) - 2l\left| {{\mathbf{v}}({\mathbf{x}})} \right|\cos \alpha = F{{({\mathbf{x}})}^{2}}. \\ \end{gathered} $$

Therefore, we get \(\left\| {g{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}}} \right\| = F({\mathbf{x}})\).

Let us prove that \({{c}_{x}}: = c{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}}\) is one to one mapping from \({{S}_{1}}\) to \({{S}_{1}}\) for every fixed \(x \in \Omega \).

Assume that \({{c}_{x}}\) is not one to one mapping. Then there exists \({{{\mathbf{a}}}_{1}},\,{{{\mathbf{a}}}_{2}} \in {{S}_{1}}({{{\mathbf{a}}}_{1}} \ne {{{\mathbf{a}}}_{2}})\) and \({\mathbf{a}} \in {{S}_{1}}\) such that \({{c}_{x}}({{{\mathbf{a}}}_{1}}) = {{c}_{x}}({{{\mathbf{a}}}_{2}}) = {\mathbf{a}}\).

Otherwise, since \(\left\| {g{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}}} \right\| = F({\mathbf{x}})\) and \(c{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}} = g{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)/}}\left\| {g{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}}} \right\|\), we get

$$\begin{gathered} F({\mathbf{x}})c{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}} - {\mathbf{v}}({\mathbf{x}}) = g{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}} - {\mathbf{v}}({\mathbf{x}}) = \left( {{\mathbf{v}}({\mathbf{x}}) \cdot {\mathbf{a}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{\mathbf{v}}}^{2}}({\mathbf{x}}) - {{{({\mathbf{v}}({\mathbf{x}}) \cdot {\mathbf{a}})}}^{2}})} } \right){\mathbf{a}} \\ + \;{\mathbf{v}}({\mathbf{x}}) - {\mathbf{v}}({\mathbf{x}}) = \left( {{\mathbf{v}}({\mathbf{x}}) \cdot {\mathbf{a}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{\mathbf{v}}}^{2}}({\mathbf{x}}) - {{{({\mathbf{v}}({\mathbf{x}}) \cdot {\mathbf{a}})}}^{2}})} } \right){\mathbf{a}} \\ \end{gathered} $$
(16)

and thus we get

$$F({\mathbf{x}})c({\mathbf{x}}{\mathbf{,}}{{{\mathbf{a}}}_{{\text{1}}}}) - {\mathbf{v}}({\mathbf{x}}) = g({\mathbf{x}}{\mathbf{,}}{{{\mathbf{a}}}_{{\text{1}}}}) - {\mathbf{v}}({\mathbf{x}}) = \left( {{\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{1}}}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{\mathbf{v}}}^{2}}({\mathbf{x}}) - {{{({\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{1}}}})}}^{2}})} } \right){{{\mathbf{a}}}_{{\text{1}}}},$$
$$F({\mathbf{x}})c{\text{(}}{\mathbf{x}}{\mathbf{,}}{{{\mathbf{a}}}_{{\text{2}}}}{\text{)}} - {\mathbf{v}}({\mathbf{x}}) = g{\text{(}}{\mathbf{x}}{\mathbf{,}}{{{\mathbf{a}}}_{{\text{2}}}}{\text{)}} - {\mathbf{v}}({\mathbf{x}}) = \left( {{\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{2}}}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{\mathbf{v}}}^{2}}({\mathbf{x}}) - {{{({\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{2}}}})}}^{2}})} } \right){{{\mathbf{a}}}_{{\text{2}}}}.$$

By using the fact that \({{c}_{x}}({{{\mathbf{a}}}_{1}}) = {{c}_{x}}({{{\mathbf{a}}}_{2}}) = {\mathbf{a}}\), we get

$$\left( {{\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{1}}}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{\mathbf{v}}}^{2}}({\mathbf{x}}) - {{{({\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{1}}}})}}^{2}})} } \right){{{\mathbf{a}}}_{{\text{1}}}} = \left( {{\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{2}}}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{\mathbf{v}}}^{2}}({\mathbf{x}}) - {{{({\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{2}}}})}}^{2}})} } \right){{{\mathbf{a}}}_{{\text{2}}}}.$$

Since \({{{\mathbf{a}}}_{1}},\,{{{\mathbf{a}}}_{2}} \in {{S}_{1}}\), we get \({{{\mathbf{a}}}_{1}} = {{{\mathbf{a}}}_{2}}\). This is contradictory to \({{{\mathbf{a}}}_{1}},\,{{{\mathbf{a}}}_{2}} \in {{S}_{1}}({{{\mathbf{a}}}_{1}} \ne {{{\mathbf{a}}}_{2}})\) and thus \({{c}_{x}}\) is one to one mapping.

From (16),

$$\frac{{F({\mathbf{x}})c{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}} - {\mathbf{v}}({\mathbf{x}})}}{{\left\| {F({\mathbf{x}})c{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}} - {\mathbf{v}}({\mathbf{x}})} \right\|}} = \frac{{\left( {{\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{2}}}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{\mathbf{v}}}^{2}}({\mathbf{x}}) - {{{({\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{2}}}})}}^{2}})} } \right){\mathbf{a}}}}{{\left( {{\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{2}}}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{\mathbf{v}}}^{2}}({\mathbf{x}}) - {{{({\mathbf{v}}({\mathbf{x}}) \cdot {{{\mathbf{a}}}_{{\text{2}}}})}}^{2}})} } \right)}} = {\mathbf{a}}$$

and thus we see that \({{c}_{x}}\) is and it’s inverse mapping is

$$c_{x}^{{ - 1}}:{{S}_{1}} \to {{S}_{1}},$$
$${\mathbf{a}} \mapsto \frac{{F({\mathbf{x}}){\mathbf{a}} - {\mathbf{v}}({\mathbf{x}})}}{{\left\| {F({\mathbf{x}}){\mathbf{a}} - {\mathbf{v}}({\mathbf{x}})} \right\|}}.$$

We also present a detailed proof of Lemma 2.3.

Proof of Lemma 2.3.

By the definition of \(\tilde {f}{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}}: = {\mathbf{v}}(x) \cdot {\mathbf{a}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{\mathbf{v}}}^{2}}({\mathbf{x}}) - {{{({\mathbf{v}}({\mathbf{x}}) \cdot {\mathbf{a}})}}^{2}})} \), we get

$$\begin{gathered} \tilde {f}({\mathbf{x}}{\mathbf{,a}}) = {\mathbf{v}}({\mathbf{x}}) \cdot {\mathbf{a}} + \sqrt {{{F}^{2}}({\mathbf{x}}) - ({\text{(}}{{{\mathbf{v}}}^{{\mathbf{2}}}}({\mathbf{x}}) - {{{{\text{(}}{\mathbf{v}}({\mathbf{x}}) \cdot {\mathbf{a}}{\text{)}}}}^{{\mathbf{2}}}})} = {{{v}}_{1}}({\mathbf{x}}){{a}_{1}} + {{{v}}_{2}}({\mathbf{x}}){{a}_{2}} \\ + \;\sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{v}}_{1}}({\mathbf{x}})(1 - a_{1}^{2}) + {{{v}}_{2}}({\mathbf{x}})(1 - a_{2}^{2}) - 2{{{v}}_{1}}({\mathbf{x}}){{{v}}_{2}}({\mathbf{x}}){{a}_{1}}{{a}_{2}})} . \\ \end{gathered} $$

Therefore, we get

$$\begin{gathered} \left\| {\tilde {f}{\text{(}}{\mathbf{x}}{\mathbf{,a}}{\text{)}} - \tilde {f}{\text{(}}{\mathbf{y}}{\mathbf{,a}}{\text{)}}} \right\| = \left| {{{{v}}_{1}}({\mathbf{x}}){{a}_{1}} - {{{v}}_{1}}({\mathbf{y}}){{a}_{1}} + {{{v}}_{2}}({\mathbf{x}}){{a}_{2}}\mathop - \limits_{_{{}}} {{{v}}_{2}}({\mathbf{y}}){{a}_{2}}} \right. \\ + \;\sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{v}}_{1}}({\mathbf{x}})(1 - a_{1}^{2}) + {{{v}}_{2}}({\mathbf{x}})(1 - a_{2}^{2}) - 2{{{v}}_{1}}({\mathbf{x}}){{{v}}_{2}}({\mathbf{x}}){{a}_{1}}{{a}_{2}})} \\ \left. { - \;\sqrt {{{F}^{2}}({\mathbf{y}}) - ({{{v}}_{1}}({\mathbf{y}})(1 - a_{1}^{2}) + {{{v}}_{2}}({\mathbf{y}})(1 - a_{2}^{2}) - 2{{{v}}_{1}}({\mathbf{y}}){{{v}}_{2}}({\mathbf{y}}){{a}_{1}}{{a}_{2}})} } \right| \leqslant \left| {{{{v}}_{1}}({\mathbf{x}}){{a}_{1}} - {{{v}}_{1}}({\mathbf{y}}){{a}_{1}}} \right| \\ \end{gathered} $$
$$\begin{gathered} + \;\left| {{{{v}}_{2}}({\mathbf{x}}){{a}_{2}} - {{{v}}_{2}}({\mathbf{y}}){{a}_{2}}} \right| + \left| {\sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{v}}_{1}}({\mathbf{x}})(1 - a_{1}^{2}) + {{{v}}_{2}}({\mathbf{x}})(1 - a_{2}^{2}) - 2{{{v}}_{1}}({\mathbf{x}}){{{v}}_{2}}({\mathbf{x}}){{a}_{1}}{{a}_{2}})} } \right. \\ \left. { - \;\sqrt {{{F}^{2}}({\mathbf{y}}) - ({{{v}}_{1}}({\mathbf{y}})(1 - a_{1}^{2}) + {{{v}}_{2}}({\mathbf{y}})(1 - a_{2}^{2}) - 2{{{v}}_{1}}({\mathbf{y}}){{{v}}_{2}}({\mathbf{y}}){{a}_{1}}{{a}_{2}})} } \right| \leqslant \left| {{{{v}}_{1}}({\mathbf{x}}) - {{{v}}_{1}}({\mathbf{y}})} \right| \\ \end{gathered} $$
$$\begin{gathered} + \;\left| {{{{v}}_{2}}({\mathbf{x}}) - {{{v}}_{2}}({\mathbf{y}})} \right| + \left| {\sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{v}}_{1}}({\mathbf{x}})(1 - a_{1}^{2}) + {{{v}}_{2}}({\mathbf{x}})(1 - a_{2}^{2}) - 2{{{v}}_{1}}({\mathbf{x}}){{{v}}_{2}}({\mathbf{x}}){{a}_{1}}{{a}_{2}})} } \right. \\ \left. { - \;\sqrt {{{F}^{2}}({\mathbf{y}}) - ({{{v}}_{1}}({\mathbf{y}})(1 - a_{1}^{2}) + {{{v}}_{2}}({\mathbf{y}})(1 - a_{2}^{2}) - 2{{{v}}_{1}}({\mathbf{y}}){{v}_{2}}({\mathbf{y}}){{a}_{1}}{{a}_{2}})} } \right|. \\ \end{gathered} $$

Here,

$$\begin{gathered} \left| {\sqrt {{{F}^{2}}({\mathbf{x}}) - ({{{v}}_{1}}({\mathbf{x}})(1 - a_{1}^{2}) + {{{v}}_{2}}({\mathbf{x}})(1 - a_{2}^{2}) - 2{{{v}}_{1}}({\mathbf{x}}){{{v}}_{2}}({\mathbf{x}}){{a}_{1}}{{a}_{2}})} } \right. \\ \left. { - \;\sqrt {{{F}^{2}}({\mathbf{y}}) - ({{{v}}_{1}}({\mathbf{y}})(1 - a_{1}^{2}) + {{{v}}_{2}}({\mathbf{y}})(1 - a_{2}^{2}) - 2{{{v}}_{1}}({\mathbf{y}}){{{v}}_{2}}({\mathbf{y}}){{a}_{1}}{{a}_{2}})} } \right| \\ \end{gathered} $$
$$ \leqslant \,\frac{{\left| {{{F}^{2}}({\mathbf{x}})\, - \,({{{v}}_{1}}({\mathbf{x}}){\kern 1pt} (1\, - \,a_{1}^{2})\, + \,{{{v}}_{2}}({\mathbf{x}}){\kern 1pt} (1\, - \,a_{2}^{2})\, - \,2{{{v}}_{1}}({\mathbf{x}}){{{v}}_{2}}({\mathbf{x}}){{a}_{1}}{{a}_{2}})\, - \,{{F}^{2}}({\mathbf{y}})\, - \,({{{v}}_{1}}({\mathbf{y}}){\kern 1pt} (1 - a_{1}^{2})\, + \,{{{v}}_{2}}({\mathbf{y}}){\kern 1pt} (1\, - \,a_{2}^{2})\, - \,2{{{v}}_{1}}({\mathbf{y}}){{{v}}_{2}}({\mathbf{y}}){{a}_{1}}{{a}_{2}})} \right|}}{{\left| {\sqrt {{{F}^{2}}({\mathbf{x}}) - {{{\left\| {{\mathbf{v}}({\mathbf{x}})} \right\|}}^{2}}\mathop {\sin }\nolimits^2 {{\alpha }_{1}}} + \sqrt {{{F}^{2}}({\mathbf{y}}) - {{{\left\| {{\mathbf{v}}({\mathbf{y}})} \right\|}}^{2}}\mathop {\sin }\nolimits^2 {{\alpha }_{1}}} } \right|}}$$
$$ \leqslant \frac{{\left| {{{F}^{2}}({\mathbf{x}}) - {{F}^{2}}({\mathbf{y}})} \right| + \left| {{v}_{1}^{2}({\mathbf{x}}) - {v}_{1}^{2}({\mathbf{y}})} \right|(1 - a_{1}^{2}) + \left| {{v}_{2}^{2}({\mathbf{x}}) - {v}_{2}^{2}({\mathbf{y}})} \right|(1 - a_{2}^{2}) + 2\left| {{{{v}}_{1}}({\mathbf{x}}){{{v}}_{2}}({\mathbf{x}}) - {{{v}}_{1}}({\mathbf{y}}){{{v}}_{2}}({\mathbf{y}})} \right|{{a}_{1}}{{a}_{2}}}}{{2\sqrt {{{F}^{2}}({\mathbf{x}}) - {{{\left\| {{v}({\mathbf{x}})} \right\|}}^{2}}} \sqrt {{{F}^{2}}({\mathbf{x}}) - {{{\left\| {{v}({\mathbf{x}})} \right\|}}^{2}}} }}$$
$$ \leqslant \frac{{\left| {{{F}^{2}}({\mathbf{x}}) - {{F}^{2}}({\mathbf{y}})} \right| + \left| {{v}_{1}^{2}({\mathbf{x}}) - {v}_{1}^{2}({\mathbf{y}})} \right| + \left| {{v}_{2}^{2}({\mathbf{x}}) - {v}_{2}^{2}({\mathbf{y}})} \right| + 2\left| {{{{v}}_{1}}({\mathbf{x}}){{{v}}_{2}}({\mathbf{x}}) - {{{v}}_{1}}({\mathbf{x}}){{v}_{2}}({\mathbf{y}}) + {{{v}}_{1}}({\mathbf{x}}){{v}_{2}}({\mathbf{y}}) - {{{v}}_{1}}({\mathbf{y}}){{{v}}_{2}}({\mathbf{y}})} \right|}}{{2g_{1}^{2}}}$$
$$ \leqslant \frac{{2{{F}_{{\max }}}\left| {F({\mathbf{x}}) - F({\mathbf{y}})} \right| + \left| {{v}_{1}^{2}({\mathbf{x}}) - {v}_{1}^{2}({\mathbf{y}})} \right| + \left| {{v}_{2}^{2}({\mathbf{x}}) - {v}_{2}^{2}({\mathbf{y}})} \right| + 2\left| {{{{v}}_{1}}({\mathbf{x}})} \right|\left| {{{{v}}_{2}}({\mathbf{x}}) - {{{v}}_{2}}({\mathbf{y}})} \right| + 2\left| {{{{v}}_{2}}({\mathbf{y}})} \right|\left| {{{{v}}_{1}}({\mathbf{x}}) - {{{v}}_{1}}({\mathbf{y}})} \right|}}{{2g_{1}^{2}}}$$
$$ \leqslant \,\frac{{2{{F}_{{\max }}}{\kern 1pt} \left| {F({\mathbf{x}}) - F({\mathbf{y}})} \right| + 2{{V}_{{\max }}}{\kern 1pt} \left| {{{{v}}_{1}}({\mathbf{x}}) - {{{v}}_{1}}({\mathbf{y}})} \right| + 2{{V}_{{\max }}}{\kern 1pt} \left| {{{{v}}_{2}}({\mathbf{x}}) - {{{v}}_{2}}({\mathbf{y}})} \right| + 2{{V}_{{\max }}}{\kern 1pt} \left| {{{{v}}_{1}}({\mathbf{x}}) - {{{v}}_{1}}({\mathbf{y}})} \right| + 2{{V}_{{\max }}}\left| {{{{v}}_{2}}({\mathbf{x}}) - {{{v}}_{2}}({\mathbf{y}})} \right|}}{{2g_{1}^{2}}}$$
$$ \leqslant \frac{{{{F}_{{\max }}}}}{{g_{1}^{2}}}\left| {F({\mathbf{x}}) - F({\mathbf{y}})} \right| + \frac{{2{{V}_{{\max }}}}}{{g_{1}^{2}}}\left| {{{{v}}_{1}}({\mathbf{x}}) - {{{v}}_{1}}({\mathbf{y}})} \right| + \frac{{2{{V}_{{\max }}}}}{{g_{1}^{2}}}{v}\left| {{{v}_{2}}({\mathbf{x}}) - {{{v}}_{2}}({\mathbf{y}})} \right|$$

and from the assumption (2.2), we get

$$\begin{gathered} \left| {f({\mathbf{x}}{\mathbf{,a}}) - f({\mathbf{y}}{\mathbf{,a}})} \right| \leqslant \left| {{{{v}}_{1}}({\mathbf{x}}) - {{{v}}_{1}}({\mathbf{y}})} \right| + \left| {{{{v}}_{2}}({\mathbf{x}}) - {{{v}}_{2}}({\mathbf{y}})} \right| \\ + \;\frac{{{{F}_{{\max }}}}}{{g_{1}^{2}}}\left| {F({\mathbf{x}}) - F({\mathbf{y}})} \right| + \frac{{2{{V}_{{\max }}}}}{{g_{1}^{2}}}\left| {{{{v}}_{1}}({\mathbf{x}}) - {{{v}}_{1}}({\mathbf{y}})} \right| + \frac{{2{{V}_{{\max }}}}}{{g_{1}^{2}}}\left| {{{{v}}_{2}}({\mathbf{x}}) - {{{v}}_{2}}({\mathbf{y}})} \right| \\ \leqslant \;\left( {{{L}_{{{{{v}}_{1}}}}} + {{L}_{{{{{v}}_{2}}}}} + \frac{{{{F}_{{\max }}}{{L}_{F}} + 2{{V}_{{\max }}}{{L}_{{{{{v}}_{1}}}}} + 2{{V}_{{\max }}}{{L}_{{{{{v}}_{2}}}}}}}{{g_{1}^{2}}}} \right)\left\| {{\mathbf{x}} - {\mathbf{y}}} \right\| \\ \end{gathered} $$

and this completes the proof of Lemma 2.3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, M.S., Pak, J.S. A Fast Single-Pass Method for Solving the Generalized Eikonal Equation in a Moving Medium. Comput. Math. and Math. Phys. 63, 2176–2191 (2023). https://doi.org/10.1134/S0965542523110118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523110118

Keywords:

Navigation