Skip to main content
Log in

Formulas for Computing Euler-Type Integrals and Their Application to the Problem of Constructing a Conformal Mapping of Polygons

  • GENERAL NUMERICAL METHODS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper deals with Euler-type integrals and the closely related Lauricella function \(F_{D}^{{(N)}}\), which is a hypergeometric function of many complex variables \({{z}_{1}}, \ldots ,{{z}_{N}}\). For \(F_{D}^{{(N)}}\) new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in corresponding subdomains of \({{\mathbb{C}}^{N}}\), including near hyperplanes of the form \(\{ {{z}_{j}} = {{z}_{l}}\} \), \(j,l = \overline {1,N} \), \(j \ne l\). The continuation formulas and identities for \(F_{D}^{{(N)}}\) found in this paper make up an effective apparatus for computing this function and Euler-type integrals expressed in terms of it in the entire complex space \({{\mathbb{C}}^{N}}\), including complicated cases when the variables form one or several groups of closely spaced neighbors. The results are used to compute parameters of the Schwarz–Christoffel integral in the case of crowding and to construct conformal mappings of polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. Kratzer and W. Franz, Transzendente Funktionen (Akademische Verlagsgesellschaft, Leipzig, 1960).

    Google Scholar 

  2. H. Exton, Multiple Hypergeometric Functions and Application (Wiley, New York, 1976).

    Google Scholar 

  3. Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdélyi (McGraw-Hill, New York, 1953), Vol. 1.

    Google Scholar 

  4. G. V. Kraniotis, “Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr–de Sitter black hole spacetimes,” Classical Quantum Gravitation 24, 1775–1808 (2007).

    Article  MathSciNet  Google Scholar 

  5. A. Primoa and L. Tancredic, “Maximal cuts and differential equations for Feynman integrals: An application to the three-loop massive banana graph,” Nucl. Phys. B 921, 316–356 (2017).

    Article  MathSciNet  Google Scholar 

  6. J. Bergé, R. Massey, Q. Baghi, and P. Touboul, “Exponential shapelets: Basis functions for data analysis of isolated feature,” Mon. Not. R. Astron. Soc. 486 (1), 544–559 (2019).

    Article  Google Scholar 

  7. Yu. A. Brychkov and N. V. Savischenko, “Application of hypergeometric functions of two variables in wireless communication theory,” Lobachevskii J. Math. 40 (7), 938–953 (2019).

    Article  MathSciNet  Google Scholar 

  8. N. Akerblom and M. Flohr, “Explicit formulas for the scalar modes in Seiberg–Witten theory with an application to the Argyres–Douglas point,” J. High Energy Phys. 2 (057), 24 (2005).

    MathSciNet  Google Scholar 

  9. E. Looijenga, “Uniformization by Lauricella functions: An overview of the theory of Deligne–Mostow,” in Arithmetic and Geometry around Hypergeometric Functions (Birkhäuser, Basel, 2005).

    Google Scholar 

  10. V. I. Vlasov and S. L. Skorokhodov, “Analytical solution for the cavitating flow over a wedge II,” Comput. Math. Math. Phys. 61 (11), 1834–1854 (2021).

    Article  MathSciNet  Google Scholar 

  11. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, “Generalized Euler integrals and A-hypergeometric functions,” Adv. Math. 84, 255–271 (1990).

    Article  MathSciNet  Google Scholar 

  12. K. Matsumoto, “Relative twisted homology and cohomology groups associated with Lauricella’s F D” (2019). ArXiv:1804.00366v2

  13. V. V. Golubev, Lectures on Analytic Theory of Differential Equations (Gostekhizdat, Moscow, 1950) [in Russian].

    Google Scholar 

  14. M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  15. W. Koppenfels and F. Stallmann, Praxis der konformen Abbildung (Springer-Verlag, Berlin, 1959).

    Book  Google Scholar 

  16. L. N. Trefethen, “Numerical computation of the Schwarz–Christoffel transformation,” SIAM J. Sci. Stat. Comput. 1, 82–102 (1980).

    Article  MathSciNet  Google Scholar 

  17. P. Henrici, Applied and Computational Complex Analysis (Wiley, New York, 1991), Vols. 1–3.

    Google Scholar 

  18. G. Lauricella, “Sulle funzioni ipergeometriche a piu variabili,” Rend. Circ. Math. Palermo 7, 111–158 (1893).

    Article  Google Scholar 

  19. K. Iwasaki, H. Kimura, Sh. Shimomura, and M. Yoshida, From Gauss to Painlevé: A Modern Theory of Special Functions (Friedrich Vieweg & Sohn, Braunschweig, 1991).

    Book  Google Scholar 

  20. S. I. Bezrodnykh, “The Lauricella hypergeometric function \(F_{D}^{{(N)}}\), the Riemann–Hilbert problem, and some applications,” Russ. Math. Surv. 73 (6), 941–1031 (2018).

    Article  Google Scholar 

  21. S. I. Bezrodnykh, “Formulas for computing the Lauricella function in the case of crowding of variables,” Comput. Math. Math. Phys. 62 (12), 2069–2090 (2022).

    Article  MathSciNet  Google Scholar 

  22. I. M. Gel’fand, M. I. Graev, and V. S. Retakh, “General hypergeometric systems of equations and series of hypergeometric type,” Russ. Math. Surv. 47 (4), 1–88 (1992).

    Article  MathSciNet  Google Scholar 

  23. S. I. Bezrodnykh, “Analytic continuation of the Horn hypergeometric series with an arbitrary number of variables,” Integral Transforms Spec. Funct. 31 (10), 788–803 (2020).

    Article  MathSciNet  Google Scholar 

  24. T. M. Sadykov and A. K. Tsikh, Hypergeometric and Algebraic Functions of Several Variables (Nauka, Moscow, 2014) [in Russian].

    Google Scholar 

  25. Yu. A. Brychkov and N. V. Savischenko, “On some formulas for the Horn functions \({{H}_{6}}(a,b,b',w,z)\) and \(H_{8}^{{(c)}}(a,b;w,z)\),” Integral Transforms Spec. Funct. (2021). https://doi.org/10.1080/10652469.2021.2017427

    Book  Google Scholar 

  26. B. Ananthanarayan, S. Beraay, S. Friot, O. Marichev, and T. Pathak, “On the evaluation of the Appell F 2 double hypergeometric function” (2021). arXiv:2111.05798v1

  27. Yu. A. Brychkov and N. V. Savischenko, “On some formulas for the Horn function \({{H}_{7}}(a,b,b';c;w,z)\),” Integral Transforms Spec. Funct. (2021). https://doi.org/10.1080/10652469.2022.2056600

    Book  Google Scholar 

  28. M. Kalmykov, V. Bytev, B. Kniehl, S.-O. Moch, B. Ward, and S. Yost, “Hypergeometric functions and Feynman diagrams,” in Anti-Differentiation and the Calculation of Feynman Amplitudes, Ed. by J. Blümlein and C. Schneider (Springer, Cham, 2021).

    Google Scholar 

  29. C. Zemach, “A conformal map formula for difficult cases,” J. Comput. Appl. Math. 14, 207–215 (1986).

    Article  MathSciNet  Google Scholar 

  30. B. C. Krikeles and R. L. Rubin, “On the crowding of parameters associated with Schwarz–Christoffel transformation,” Appl. Math. Comput. 28 (4), 297–308 (1988).

    MathSciNet  Google Scholar 

  31. G. Goluzin, L. Kantorovich, V. Krylov, P. Melent’ev, M. Muratov, and N. Stenin, Conformal Mappings of Simply and Multiply Connected Domains (Nauka, Leningrad, 1937) [in Russian].

    Google Scholar 

  32. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis (Fizmatgiz, Moscow, 1962; Wiley, New York, 1964).

  33. D. Gaier, Konstructive Methoden der konformen Abbildung (Springer-Verlag, Berlin, 1964).

    Book  Google Scholar 

  34. S. I. Bezrodnykh and V. I. Vlasov, “The Riemann–Hilbert problem in a complicated domain for the model of magnetic reconnection in plasma,” Comput. Math. Math. Phys. 42 (3), 263–298 (2002).

    MathSciNet  Google Scholar 

  35. S. I. Bezrodnykh and V. I. Vlasov, “The Riemann–Hilbert problem in domains of complex geometry and its applications,” Spectral Evolution Probl. 16, 51–61 (2006).

    Google Scholar 

  36. A. B. Bogatyrev, “Conformal mapping of rectangular heptagons,” Sb. Math. 203 (12), 1715–1735 (2012).

    Article  MathSciNet  Google Scholar 

  37. N. N. Nakipov and S. R. Nasyrov, “Parametric method for finding accessory parameters in generalized Schwarz–Christoffel integrals,” Uch. Zap. Kazan. Univ. Ser. Fiz.-mat. Nauki 158 (2), 201–220 (2016).

    Google Scholar 

  38. S. I. Bezrodnykh, “Lauricella function and the conformal mapping of polygons,” Math. Notes 112 (4), 505–522 (2022).

    Article  MathSciNet  Google Scholar 

  39. L. Banjai, “Revisiting the crowding phenomenon in Schwarz–Christoffel mapping,” SIAM J. Sci. Comput. 30 (2), 618–636 (2008).

    Article  MathSciNet  Google Scholar 

  40. V. I. Vlasov and S. L. Skorokhodov, “Conformal mapping of an L-shaped domain in analytical form,” Comput. Math. Math. Phys. 62 (12), 1971–2007 (2022).

    Article  MathSciNet  Google Scholar 

  41. L. N. Trefethen and T. A. Driscoll, Schwarz–Christoffel Transformation (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  42. T. A. Driscoll, “A MATLAB toolbox for Schwarz–Christoffel mapping,” ACM Trans. Math. Soft. 22, 168–186 (1996).

    Article  Google Scholar 

  43. V. I. Vlasov, Doctoral Dissertation in Mathematics and Physics (Computing Center, USSR Academy of Sciences, Moscow, 1990).

  44. V. I. Vlasov, “Variation in a mapping function under domain deformation,” Dokl. Akad. Nauk SSSR 275 (6), 1299–1302 (1984).

    MathSciNet  Google Scholar 

  45. Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdélyi (McGraw-Hill, New York, 1955), Vol. 3.

    Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, grant no. 22-21-00727 (https://rscf.ru/en/project/22-21-00727/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Bezrodnykh.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by I. Ruzanova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezrodnykh, S.I. Formulas for Computing Euler-Type Integrals and Their Application to the Problem of Constructing a Conformal Mapping of Polygons. Comput. Math. and Math. Phys. 63, 1955–1988 (2023). https://doi.org/10.1134/S0965542523110052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523110052

Keywords:

Navigation